分析 先通过函数的值域求出a、b的范围,再根据函数f(x)在[0,+∞)上是单调性建立方程组,进行求解即可.
解答 解:因为f(x)=|2x-1|的值域为[a,b],
所以b>a≥0,
而函数f(x)=|2x-1|在[0,+∞)上是单调递增函数,
即f(x)=2x-1,
因为函数f(x)=|2x-1|的定义域和值域都是[a,b],
所以$\left\{\begin{array}{l}{f(a)={2}^{a}-1=a}\\{f(b)={2}^{b}-1=b}\end{array}\right.$,
因此应有,解得$\left\{\begin{array}{l}{a=0}\\{b=1}\end{array}\right.$,
所以有a+b=1.
故答案为:1
点评 本题主要考查函数定义域和值域的求解和应用,根据条件将函数进行化简,结合函数单调性的性质是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| 气温(℃) | 18 | 13 | 10 | -1 |
| 杯数 | 24 | 34 | 38 | 64 |
| A. | 70 | B. | 50 | C. | 60 | D. | 80 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,2x0+1>0 | B. | ?x∈R,2x+1>0 | C. | ?x0∈R,2x0+1≤0 | D. | ?x∈R,2x+1≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{3}{4},\frac{4}{3}}]$ | B. | $({0,\frac{3}{4}}]∪[{\frac{4}{3},+∞})$ | C. | $[{\frac{4}{3},+∞})$ | D. | $({0,\frac{3}{4}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | $2\sqrt{6}$ | C. | $2\sqrt{3}$ | D. | $\root{3}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com