精英家教网 > 高中数学 > 题目详情
11.已知等比数列{an}的公比q>1,且满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,Sn=b1+b2+…+bn,求使Sn+n•2n+1>62成立的正整数n的最小值.

分析 (1)求等比数列的通项公式,关键是求出首项和公比,这可直接用首项a1和公比q表示出已知并解出即可(可先把已知化简后再代入);
(2)求出bn的表达式后,要求其前n项和,需用错位相减法.然后求解不等式可得最小值.

解答 解:(1)∵由a3+2是a2、a4的等差中项,得a2+a4=2(a3+2),
因为a2+a3+a4=28,所以a2+a4=28-a3
所以2(a3+2)=28-a3,解得a3=8,
所以a2+a4=20,
所以 $\left\{\begin{array}{l}{{a}_{1}q+{a}_{1}{q}^{3}=20}\\{{a}_{1}{q}^{2}=8}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{q=2}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=32}\\{q=\frac{1}{2}\\}\end{array}\right.$,
又{an}为递增数列,所以q>1.
所以a1=2,q=2,所以an=2n
(2)∵bn=anlog${\;}_{\frac{1}{2}}$an=2nnlog${\;}_{\frac{1}{2}}$2n═-n•2n.
Sn=b1+b2+…+bn=-(1×2+2×22+…+n×2n)①
则2Sn=-(1×22+2×23+…+n×2n+1)②
②-①,得Sn=(2+22+…+2n)-n•2n+1=2n+1-2-n•2n+1
即数列{bn}的前项和Sn=2n+1-2-n•2n+1
则Sn+n•2n+1=2n+1-2>62,所以n>5,
即n的最小值为6.

点评 本题主要考查等比数列的通项公式,以及利用错位相减法求数列的前n项和,考查学生的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若拋物线x2=24y上一点(x0,y0),到焦点的距离是该点到x轴距离的4倍,则y0=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若数列{an}是正项数列,且$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+…+$\sqrt{{a}_{n}}$=n2+n,则a1+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n}}{n}$等于(  )
A.2n2+2nB.n2+2nC.2n2+nD.2(n2+2n)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知经过点P(3,m)和点Q(m,-2)的直线的斜率等于2,则m的值为(  )
A.$\frac{4}{3}$B.1C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=$\left\{\begin{array}{l}{ln(1-x),x<0}\\{{x}^{2}-ax,x≥0}\end{array}\right.$,且g(x)=f(x)+$\frac{x}{2}$有三个零点,则实数a的取值范围为(  )
A.($\frac{1}{2}$,+∞)B.[1,+∞)C.(0,$\frac{1}{2}$ )D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为$4(\sqrt{2}+1)$,一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=|2x-1|的定义域和值域都是[a,b],则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设x、y满足约束条件$\left\{\begin{array}{l}x≥0\\ x≥y\\ 2x-y≤1\end{array}\right.$若目标函数为z=2x+4y,则z的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过投掷一枚质地均匀的骰子决定去哪家购物,掷出点数5或6的人去淘宝购物,掷处点数小于5的去京东商场购物,且参加者必须从淘宝和京东商城选择一家购物.
(1)求这4人中恰有1人去淘宝购物的概率;
(2)用ξ,η分别表示这4人中取淘宝和京东商城购物的人数,记X=ξη,求随机变量X的分布列与数学期望EX.

查看答案和解析>>

同步练习册答案