1£®ÍøÉϹºÎïÖð²½×ß½ø´óѧÉú»î£¬Ä³´óѧѧÉúËÞÉá4ÈË»ý¼«²Î¼ÓÍø¹º£¬´ó¼ÒÔ¼¶¨£ºÃ¿¸öÈËͨ¹ýͶÖÀһöÖʵؾùÔȵÄ÷»×Ó¾ö¶¨È¥ÄļҹºÎÖÀ³öµãÊý5»ò6µÄÈËÈ¥ÌÔ±¦¹ºÎÖÀ´¦µãÊýСÓÚ5µÄÈ¥¾©¶«É̳¡¹ºÎÇҲμÓÕß±ØÐë´ÓÌÔ±¦ºÍ¾©¶«É̳ÇÑ¡ÔñÒ»¼Ò¹ºÎ
£¨1£©ÇóÕâ4ÈËÖÐÇ¡ÓÐ1ÈËÈ¥ÌÔ±¦¹ºÎïµÄ¸ÅÂÊ£»
£¨2£©ÓæΣ¬¦Ç·Ö±ð±íʾÕâ4ÈËÖÐÈ¡ÌÔ±¦ºÍ¾©¶«É̳ǹºÎïµÄÈËÊý£¬¼ÇX=¦Î¦Ç£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûEX£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒ⣬ÀûÓÃn´Î¶ÀÁ¢Öظ´ÊµÑéµÄ¸ÅÂʹ«Ê½¼ÆËãËùÇóµÄ¸ÅÂÊÖµ£»
£¨2£©ÓÉÌâÒâÖªXµÄËùÓпÉÄÜȡֵ£¬¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊÖµ£¬
´Ó¶øÐ´³öXµÄ·Ö²¼ÁУ¬Çó³öÊýѧÆÚÍûÖµ£®

½â´ð ½â£º£¨1£©ÒÀÌâÒ⣬Õâ4¸öÈËÖУ¬Ã¿¸öÈËÈ¥ÌÔ±¦Íø¹ºÎïµÄ¸ÅÂÊΪ$\frac{1}{3}$£¬
È¥¾©¶«Íø¹ºÎïµÄ¸ÅÂÊΪ$\frac{2}{3}$£¬
Éè¡°Õâ4¸öÈËÖÐÇ¡ÓÐi¸öÈËÈ¥ÌÔ±¦Íø¹ºÎΪʼþAi£¨i=0£¬1£¬2£¬3£¬4£©£¬
Ôò$P£¨{A_i}£©=C_4^i{£¨\frac{1}{3}£©^i}{£¨\frac{2}{3}£©^{4-i}}£¬£¨i=0£¬1£¬2£¬3£¬4£©$£¬
Õâ4È˸öÈËÖÐÇ¡ÓÐ1ÈËÈ¥ÌÔ±¦Íø¹ºÎïµÄ¸ÅÂÊΪ
$P£¨{A_1}£©=C_4^1£¨\frac{1}{3}£©{£¨\frac{2}{3}£©^3}=\frac{32}{81}$£»¡­£¨4·Ö£©
£¨2£©ÓÉÒÑÖªµÃXµÄËùÓпÉÄÜȡֵΪ0£¬3£¬4£»¡­£¨5·Ö£©
$P£¨X=0£©=P£¨{A_0}£©+P£¨{A_4}£©=C_4^0{£¨\frac{2}{3}£©^4}+C_4^4{£¨\frac{1}{3}£©^4}=\frac{17}{81}$£¬¡­£¨7·Ö£©
$P£¨X=3£©=P£¨{A_1}£©+P£¨{A_3}£©=C_4^1£¨\frac{1}{3}£©{£¨\frac{2}{3}£©^3}+C_4^3{£¨\frac{1}{3}£©^3}£¨\frac{2}{3}£©=\frac{40}{81}$£¬¡­£¨9·Ö£©
$P£¨X=4£©=P£¨{A_2}£©=C_4^2{£¨\frac{1}{3}£©^2}{£¨\frac{2}{3}£©^2}=\frac{24}{81}$£»¡­£¨11·Ö£©
¡àXµÄ·Ö²¼ÁÐΪ£º

X034
P$\frac{17}{81}$$\frac{40}{81}$$\frac{24}{81}$
¡àÊýѧÆÚÍûΪ$EX=0¡Á\frac{17}{81}+3¡Á\frac{40}{81}+4¡Á\frac{24}{81}=\frac{8}{3}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûµÄ¼ÆËãÎÊÌ⣬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄ¹«±Èq£¾1£¬ÇÒÂú×㣺a2+a3+a4=28£¬ÇÒa3+2ÊÇa2£¬a4µÄµÈ²îÖÐÏ
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôbn=anlog${\;}_{\frac{1}{2}}$an£¬Sn=b1+b2+¡­+bn£¬ÇóʹSn+n•2n+1£¾62³ÉÁ¢µÄÕýÕûÊýnµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¿Õ¼äÖ±½Ç×ø±êϵÖУ¬A£¨1£¬-2£¬-1£©£¬B£¨3£¬0£¬1£©£¬Ôò|AB|=£¨¡¡¡¡£©
A£®12B£®$2\sqrt{6}$C£®$2\sqrt{3}$D£®$\root{3}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖª½Ç¦ÈµÄÖձ߾­¹ýµãP£¨x£¬3£©£¨x£¾0£©ÇÒ$cos¦È=\frac{{\sqrt{10}}}{10}$£¬ÔòxµÈÓÚ£¨¡¡¡¡£©
A£®-1B£®1C£®-9D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®¸´Êýz=3i£¨i+1£©µÄʵ²¿ÓëÐ鲿·Ö±ðΪ£¨¡¡¡¡£©
A£®3£¬3B£®-3£¬-3iC£®-3£¬3D£®-3£¬3i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁнáÂÛÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®Èô0£¼¦Á£¼$\frac{¦Ð}{2}$£¬Ôòsin ¦Á£¼tan ¦Á
B£®Èô¦ÁÊǵڶþÏóÏ޽ǣ¬Ôò$\frac{¦Á}{2}$ΪµÚÒ»ÏóÏ޽ǻòµÚÈýÏóÏÞ½Ç
C£®Èô½Ç¦ÁµÄÖձ߹ýµãP£¨3k£¬4k£©ÇÒk¡Ù0£¬Ôòsin ¦Á=$\frac{4}{5}$
D£®Èô¦Á=-$\frac{¦Ð}{3}$£¬Ôòcos ¦Á=$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÆ½ÃæÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇµÈÓÚ$\frac{¦Ð}{2}$£¬Èç¹û|$\overrightarrow{a}$|=1£¬|$\overrightarrow{b}$|=$\sqrt{3}$£¬ÄÇô|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®¼ÆËã$cos\frac{¦Ð}{3}tan\frac{¦Ð}{4}+\frac{3}{4}{tan^2}\frac{¦Ð}{6}-sin\frac{¦Ð}{6}+{cos^2}\frac{¦Ð}{6}$µÄ½á¹ûΪ£¨¡¡¡¡£©
A£®1B£®2C£®4D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ò»¸ö»úÆ÷Áã¼þµÄÈýÊÓͼÈçͼËùʾ£¬ÆäÖвàÊÓͼÊÇÒ»¸ö°ëÔ²Óë±ß³¤Îª2µÄÕý·½ÐΣ¬¸©ÊÓͼÊÇÒ»¸ö°ëÔ²ÄÚÇÐÓڱ߳¤Îª2µÄÕý·½ÐΣ¬Ôò¸Ã»úÆ÷Áã¼þµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$8+\frac{¦Ð}{3}$B£®$8+\frac{¦Ð}{4}$C£®$8+\frac{4¦Ð}{3}$D£®$4+\frac{¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸