精英家教网 > 高中数学 > 题目详情
在△ABC中,sinA=sin2B+sin2C-sinB•sinC,则∠A=
 
考点:余弦定理
专题:解三角形
分析:已知等式利用正弦定理化简,整理得到关系式,再利用余弦定理表示出cosA,将得出关系式代入求出A的度数即可.
解答: 解:∵在△ABC中,sin2A=sin2B+sin2C-sinB•sinC,
∴由正弦定理化简得:a2=b2+c2-bc,即b2+c2-a2=bc,
∴cosA=
b2+c2-a2
2bc
=
1
2

则A=
π
3

故答案为:
π
3
点评:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若sinα=-
2
2
,且cos(α-β)=
1
2
(β>0),则满足上述条件的β的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,若对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1)恒成立,则不等式f(1-x)<0的解集为(  )
A、(-∞,0)
B、(0,+∞)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y∈R+,x+y=1,则x•y有(  )
A、最小值
1
2
B、最大值
1
2
C、最小值
1
4
D、最大值
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≥b”是“sinA≥sinB”的(  )
A、充分必要条件
B、充分而非必要条件
C、必要非充分条件
D、非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-cosx,x∈[0,
π
2
]
2sin
x
2
cos
x
2
,x∈(
π
2
,π]
,则函数f(x)的图象与x轴围成的图形的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)定义域为R,则y=
f(x)-f(-x)
2
的奇偶性为(  )
A、偶函数
B、奇函数
C、既是奇函数,又是偶函数
D、既不是奇函数,又不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=2
1
2
,b=log2
1
3
,c=log
1
2
1
3
,则(  )
A、c>b>a
B、c>a>b
C、a>b>c
D、a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:

某人在3时与5时之间,看见表的时针与分针重合,求此时的时刻.

查看答案和解析>>

同步练习册答案