精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=
(1)求函数f(x)的定义域;
(2)求f(﹣1),f(12)的值.

【答案】
(1)解:要使函数的有意义,则

,所以x≥﹣4且x≠1.

所以函数的定义域为{x|x≥﹣4且x≠1}


(2)解:


【解析】(1)利用根式函数和分式函数的定义域求法求函数的定义域.(2)利用函数关系式直接代入求值.
【考点精析】关于本题考查的函数的定义域及其求法和函数的值,需要了解求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD;
(3)求点A到平面PMB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(1)设p:实数x满足(x﹣3a)(x﹣a)<0,其中a>0,q:实数x满足 ,若p是q的充分不必要条件,求实数a的取值范围;
(2)设命题p:“函数 无极值”;命题q:“方程 表示焦点在y轴上的椭圆”,若p或q为真命题,p且q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+1),g(x)=loga(1﹣x)其中(a>0且a≠1).
(1)判断f(x)﹣g(x)的奇偶性,并说明理由;
(2)求使f(x)﹣g(x)>0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆锥和圆柱的组合体(它们的底面重合),圆锥的底面圆半径为 为圆锥的母线, 为圆柱的母线, 为下底面圆上的两点,且 .

(1)求证:平面平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的准线为,焦点为 为坐标原点.

(1)求过点,且与相切的圆的方程;

(2)过的直线交抛物线两点, 关于轴的对称点为,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(Ⅰ)讨论函数的极值点的个数;

(Ⅱ)若函数的图象与函数的图象有两个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过,圆心在直线上,过点,且斜率为的直线交圆相交于两点.

(Ⅰ)求圆的方程;

(Ⅱ)(i)请问是否为定值.若是,请求出该定值,若不是,请说明理由;

(ii)若为坐标原点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车入住泉州一周年以来,因其“绿色出行,低碳环保”的理念而备受人们的喜爱,值此周年之际,某机构为了了解共享单车使用者的年龄段,使用频率、满意度等三个方面的信息,在全市范围内发放份调查问卷,回收到有效问卷份,现从中随机抽取份,分别对使用者的年龄段、~岁使用者的使用频率、~岁使用者的满意度进行汇总,得到如下三个表格:

(Ⅰ)依据上述表格完成下列三个统计图形:

(Ⅱ)某城区现有常住人口万,请用样本估计总体的思想,试估计年龄在岁~岁之间,每月使用共享单车在~次的人数.

查看答案和解析>>

同步练习册答案