精英家教网 > 高中数学 > 题目详情
如果不等式
2x2+2mx+m
4x2+6x+3
<1对一切实数x均成立,则实数m的取值范围是(  )
A、(1,3)
B、(-∞,3)
C、(-∞,1)∪(2,+∞)
D、(-∞,+∞)
考点:函数恒成立问题
专题:综合题,函数的性质及应用
分析:不等式式
2x2+2mx+m
4x2+6x+3
<1对一切实数x均成立,等价于 2x2+2(3-m)x+(3-m)>0 对一切实数x均成立,利用判别式小于0,即可求出实数m的取值范围.
解答: 解:不等式式
2x2+2mx+m
4x2+6x+3
<1对一切实数x均成立,
等价于 2x2+2(3-m)x+(3-m)>0 对一切实数x均成立
∴[2(3-m)]2-4×2×(3-m)<0,
故m的取值范围为(1,3).
故选:A.
点评:本题考查了函数的恒成立问题.对于函数的恒成立问题,一般选用参变量分离法、最值法、数形结合法进行求解.本题解题的关键是运用二次函数的性质进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若关于x的不等式(组)0≤x2-
1
3
x-
2n
(2n+1)2
2
9
任意n∈N*恒成立,则所有这样的解x的集合是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=3x+3x-8,且f(1)<0,f(1.5)>0,f(1.25)<0,f(2)>0,则函数f(x)的零点落在区间(  )
A、(1,1.25)
B、(1.25,1.5)
C、(1.5,2)
D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知A、B、C三点不共线,O是平面ABC外的一点,点P在平面ABC内,且满足
OP
=
OA
+
OB
+m
OC
,则实数m的值为(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是三角形ABC的外心,AB=2,AC=5,若
AO
=x
AB
+y
AC
,且x+4y=2,则三角形ABC的面积为(  )
A、
5
39
4
B、
5
39
8
C、
5
39
16
D、
5
39
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知l1,l2,l是同一平面内的三条直线,l1⊥l,l2与l不垂直,求证:l1与l2必相交.
证明:假设l1与l2不相交,则l1∥l2,所以∠1=∠2.
因为l2与l不垂直,
所以∠2≠90°,所以∠1≠90°,
所以l1不是l的垂线,与已知条件矛盾,
所以l1与l2必相交.
本题所采用的证明方法是(  )
A、分析法B、综合法
C、反证法D、归纳法

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,
AB
=
a
AD
=
b
AN
=3
NC
,则
BN
=(  )(用
a
b
表示)
A、
1
4
a
-
3
4
b
B、
3
4
a
-
1
4
b
C、
1
4
b
-
3
4
a
D、
3
4
b
-
1
4
a

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱柱ABCD-A1B1C1D1的棱长都为a,底面ABCD是菱形,且∠BAD=60°,侧棱A1A⊥平面ABCD,F为棱B1B的中点,M为线段AC1的中点.
(Ⅰ)求证:平面AFC1⊥平面A1C1AC;
(Ⅱ)求三棱锥C1-ABF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
,满足|
a
|=1且(
a
-
b
)•(
a
+
b
)=
1
2

(1)若
a
b
=
1
2
,求向量
a
b
的夹角;
(2)在(1)的条件下,求|
a
-
b
|的值.

查看答案和解析>>

同步练习册答案