精英家教网 > 高中数学 > 题目详情
设F1、F2是椭圆
x2
4
+
y2
3
=1的两个焦点,点P为椭圆上任意一点,求
PF
2
1
PF
2
2
的最大值.
考点:椭圆的简单性质
专题:圆锥曲线中的最值与范围问题
分析:由已知条件结合椭圆性质,推导出PF1=x,则PF2=2a-x=4-x,(1≤x≤3),从而得到
PF
2
1
PF
2
2
=
x2
(4-x)2
,由此利用二次函数的性质能求出
PF
2
1
PF
2
2
的最大值.
解答: 解:∵F1、F2是椭圆
x2
4
+
y2
3
=1的两个焦点,点P为椭圆上任意一点,
∴a=2,b=
3
,c=1,
设PF1=x,则PF2=2a-x=4-x,(1≤x≤3),
PF
2
1
PF
2
2
=
x2
(4-x)2
=(
1
4
x
-1
)2

∵1≤x≤3,∴
4
3
4
x
≤4
1
3
4
x
-1≤3
1
4
x
-1
∈[
1
3
,3]

PF
2
1
PF
2
2
=
x2
(4-x)2
∈[
1
9
,9]

PF
2
1
PF
2
2
的最大值是9.
点评:本题考查椭圆的性质的应用,是中档题,解题时要熟练掌握椭圆的简单性质,要注意二次函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式|x+1|+|x-2|≤5的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数F(x)=ex满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,若?x∈[1,2]使得不等式g(2x)-ah(x)≥0恒成立,则实数a的取值范围是(  )
A、(-∞,2
2
)
B、(-∞,2
2
]
C、(0,2
2
]
D、(2
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A,B,C,A={直线},B={平面},C=A∪B,若a∈A,b∈B,c∈C,给出下列命题:
a∥b
c∥b
⇒a∥c

a⊥b
c⊥b
⇒a∥c

a⊥b
c∥b
⇒a⊥c

其中正确的命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两个顶点为A(a,0)、B(0,b),右焦点为F,且F到直线AB的距离等于F到原点的距离,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;
    第一组:f1(x)=x+1,f2(x)=2x,h(x)=5x+1;
    第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(2)设f1(x)=2x,f2(x)=(
1
2
x,a=1,b=-1,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[1,2]上有解,求实数t的取值范围;
(3)设f1(x)=x,f2(x)=
1
x
(1≤x≤10),取a=1,b>0,生成函数h(x)使h(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+8x,g(x)=x-ln(x+1)
(Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t);
(Ⅱ)是否存在实数k,对任意的x∈[0,+∞),不等式g(x)≤8kx-kf(x)恒成立?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项a1=1,公差d=
2
3
,且bn=(-1)n-1anan+1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数:z=
2i
1+i
,则z的值为
 

查看答案和解析>>

同步练习册答案