精英家教网 > 高中数学 > 题目详情
17.在△ABC中,三边a、b、c所对的角分别为A、B、C,若a2+b2-c2+$\sqrt{2}$ab=0,则角C的大小为$\frac{3π}{4}$.

分析 由已知利用余弦定理即可求得cosC的值,结合C的范围即可得解.

解答 解:∵a2+b2-c2+$\sqrt{2}$ab=0,可得:a2+b2-c2=-$\sqrt{2}$ab,
∴由余弦定理可得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{-\sqrt{2}ab}{2ab}$=-$\frac{\sqrt{2}}{2}$,
∵C∈(0,π),
∴C=$\frac{3π}{4}$.
故答案为:$\frac{3π}{4}$.

点评 本题主要考查了余弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知p:$\frac{3}{x-1}$≤1,q:x2+x≤a2-a(a<0),若¬q成立的一个充分而不必要条件是¬p,则实数a的取值范围为(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(-2,λ),且$\overrightarrow{a}$与$\overrightarrow{b}$共线,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a=log0.53,b=20.5,c=0.50.3,则a,b,c三者的大小关系是(  )
A.b>a>cB.b>c>aC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(log2x)=x+x-1
 (1)求f(1);
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.过点(1,-1)作函数f(x)=x3-x的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(lgx)定义域是[0.1,100],则函数$f(\frac{x}{2})$的定义域是(  )
A.[-1,2]B.[-2,4]C.[0.1,100]D.$[{-\frac{1}{2},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=2log2(x2+1)(x<-1)的反函数f-1(x)=-$\sqrt{{2}^{\frac{x}{2}}-1}$(x>2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-ex
(1)判断函数f(x)的单调性并给予证明;
(2)若g(x)=f(x)ln(x+1)+ex,证明:对?x1,x2∈[1,+∞),且x1≠x2,都有|g(x1)-g(x2)|>$\frac{5}{2}$|x1-x2|.

查看答案和解析>>

同步练习册答案