精英家教网 > 高中数学 > 题目详情
16.某地区高二理科学生有28000名,在一次模拟考试中,数学成绩ξ服从正态分布N(100,σ2),已知P(80<ξ≤120)=0.7,则本次考试中数学成绩在120分以上的大约有(  )
A.11200人B.8400人C.4200人D.2800人

分析 由题意结合正态分布曲线可得120分以上的概率,乘以28000可得.

解答 解:∵数学成绩ξ服从正态分布N(100,σ2),P(80<ξ≤120)=0.7,
∴P(100<ξ≤120)=0.35,
∴P(ξ>120)=0.5-0.35=0.15,
∴28000×0.15=4200,
故选:C.

点评 本题考查正态分布曲线,数形结合是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在明朝程大位《算法统宗》中有首依等算钞歌:“甲乙丙丁戊己庚,七人钱本不均平,甲乙念三七钱钞,念六一钱戊己庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推祥算莫差争.”题意是:“现有七人,他们手里钱不一样多,依次差值等额,已知甲乙两人共237钱,戊己庚三人共261钱,求各人钱数.”根据上题的已知条件,丁有(  )
A.100钱B.101钱C.102钱D.103钱

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若角α的终边经过点(1,2),则sin2α-cos2α=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中含x项的系数为20,求展开式中含x2项的系数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知偶函数f(x)满足f(x)=f(π-x),当x∈[-$\frac{π}{2}$,0]时,f(x)=2x-cosx,则函数f(x)在区间[0,π]内的零点的个数(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将二进制数110011(2)转化为十进制数,结果为(  )
A.51B.52C.53D.54

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2,离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)若动直线l经过点M(-2,0)与椭圆C交于P、Q两点,O为坐标原点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设随机变量X~N(3,σ2),若P(X>m)=0.3,则P(m>X>6-m)=(  )
A.0.4B.0.6C.0.7D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.随机变量X的分布列如表所示,则X的数学期望为(  )
 X 0 4
 P 0.10.2  0.3 0.4
A.2B.2.4C.2.6D.3

查看答案和解析>>

同步练习册答案