精英家教网 > 高中数学 > 题目详情
17.若过点A(4,sinα)和B(5,cosα)的直线与直线x-y+c=0平行,则|AB|的值为$\sqrt{2}$.

分析 过点A(4,sinα)和B(5,cosα)的直线与直线x-y+c=0平行,利用斜率相等可得:cosα-sinα=1.再利用两点之间的距离公式即可得出.

解答 解:∵过点A(4,sinα)和B(5,cosα)的直线与直线x-y+c=0平行,
∴$\frac{cosα-sinα}{5-4}$=1,
化为cosα-sinα=1.
∴|AB|=$\sqrt{(4-5)^{2}+(sinα-cosα)^{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了平行线与斜率的关系、两点之间的距离公式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|2x+a|+x.
(1)当a=-2时,求不等式f(x)≤2x+1的解集;
(2)若f(x)≤|x+3|的解集包含[1,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的单调区间:
(1)y=sinx,x∈[-π,π];
(2)y=sinx,x∈[-π,$\frac{π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设(2x-i)5=a0+a1x+a2x2+…+a5x5(i是虚数单位),则|a0|+|a1|+…+|a5|=243.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若a1=a(0<a<1),an+an+1=2n(n∈N*),则an=$\left\{\begin{array}{l}{n+a-1,n为奇数}\\{n-a,n为偶数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的前n项和为Sn,且满足Sn=2an+(-1)n,n∈N*,则an=$\frac{{2}^{n-1}-2(-1)^{n}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=$\frac{1}{2}$cos2x+sinxcosx+$\frac{3}{2}$sin2x的最大值、最小值及取得最大最小值时相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知抛物线C:y2=4x,以M(1,2)为直角顶点作该抛物线的内接直角三角形MAB,若直线AB过定点P,则点P的坐标为(5,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知三棱锥的三条侧棱两两互相垂直,底面三条边长分别为$\sqrt{13}$,5,2$\sqrt{5}$,求三棱锥的侧面积.

查看答案和解析>>

同步练习册答案