精英家教网 > 高中数学 > 题目详情
8.有5名男生4名女生,全体排成一排,问下列情形各有多少种不同的排法?
(1)男生甲站左端;
(2)男生甲站中间;
(3)两端都是男生;
(4)两端不都是男生.

分析 (1)(2),先排甲有1种,剩下的8个元素全排列有A88种,根据分步计数原理得到结果.
(3)先排两端,再排其余7人,再根据分步计数原理得到结果.
(4)利用间接法求解.

解答 解:(1)男生甲站左端,有A88=40320种排法;
(2)男生甲站中间,有A88=40320种排法;
(3)两端都是男生,有A52A77=100800种排法;
(4)两端不都是男生,有A99-A52A77=383040种排法.

点评 本题集排列多种类型于一题,充分体现了元素分析法(优先考虑特殊元素)、位置分析法(优先考虑特殊位置)、直接法、间接法(排除法)等常见的解题思路.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和${S_n}={n^2}$,等比数列{bn},b1=a1,b4是a4与a5的等差中项.
(1)求数列{an},{bn}的通项公式;
(2)记cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知全集为R,A={x|$lo{g}_{\frac{1}{2}}$(3-x)≥-2},B={x|-2<x≤3},求(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若向量$\overrightarrow{a}$=(2,3,λ),$\overrightarrow{b}$=(-1,1,$\frac{\sqrt{6}}{3}$)的夹角为60°,则λ等于(  )
A.$\frac{23}{12}$B.$\frac{\sqrt{6}}{12}$C.$\frac{23\sqrt{6}}{12}$D.-$\frac{23\sqrt{6}}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知3$\overrightarrow{a}$-2$\overrightarrow{b}$=(-2,0,4),$\overrightarrow{c}$=(-2,1,2),$\overrightarrow{a}$•$\overrightarrow{c}$=2,且|$\overrightarrow{b}$|=4.
(1)求cos<$\overrightarrow{b}$,$\overrightarrow{c}$>;
(2)记$\overrightarrow{d}$=(-2,0,4),确定实数k,使得($\overrightarrow{d}$+k$\overrightarrow{c}$)与($\overrightarrow{d}$-2$\overrightarrow{c}$)互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知cos2α=-$\frac{9}{41}$,cos2β=-$\frac{12}{13}$,$\frac{π}{2}$<α<π,$\frac{π}{2}$<β<π,求:sin2(α+β)-sin2(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直线l经过A(4,0)和B(0,4)两点,它与抛物线y=ax2在第一象限内交于P点,如果△AOP的面积为2,求此抛物线的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=4x
(1)抛物线C上有一动点P,当P到C的准线与到点Q(7,8)的距离之和最小时,求点P的坐标;
(2)是否存在直线l:y=kx+b与C交于A、B两个不同的点,使OA与OB(O为坐标原点)所在直线的倾斜角互补,如果存在,试确定k与b的关系,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sinxcosx-cos2x.
(1)求f(x)的最小正周期;
(2)求f(x)在区间$[\frac{π}{8},\frac{3π}{4}]$上的最小值,并求取得最小值时x的值.

查看答案和解析>>

同步练习册答案