分析 (I)由椭圆的定义,得点D的轨迹是以F1、F2为焦点,以4$\sqrt{2}$为长轴长的椭圆,即可求得轨迹方程;
(Ⅱ)分直线l的斜率存在和不存在两种情况讨论,斜率不存在时,直接求出A,B的坐标,则k1、k2可求,求出kl+k2=4,当斜率存在时,设出直线l的方程,和椭圆方程联立后化为关于x的一元二次方程,利用根与系数关系得到A,B两点横坐标的和与积,写出斜率的和后代入A,B两点的横坐标的和与积,整理后得到kl+k2=4.从而证得答案.
解答 (I)解:∵F2C的垂直平分线交F1C于D,
∴|DF1|=|DC|.
∵|F1C|=4$\sqrt{2}$,
∴|DF1|+|DC|=4$\sqrt{2}$,
∴|DF1|+|DF2|=4$\sqrt{2}$,
∴点D的轨迹是以F1、F2为焦点,以4$\sqrt{2}$为长轴长的椭圆.
由c=2,a=2$\sqrt{2}$,得b2=a2-c2=8-4=4.
故曲线的方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1;
(Ⅱ)证明:当直线l的斜率存在时,设其方程为y+2=k(x+1),
与椭圆方程联立,可得(1+2k2)x2+4k(k-2)x+2k2-8k=0.
设A(x1,y1),B(x2,y2),
则x1+x2=-$\frac{4k(k-2)}{1+2{k}^{2}}$,x1x2=$\frac{2{k}^{2}-8k}{1+2{k}^{2}}$.
从而kl+k2═2k-(k-4)•$\frac{4k(k-2)}{2{k}^{2}-8k}$=4.
当直线l的斜率不存在时,得A(-1,$\frac{\sqrt{14}}{2}$),B(-1,-$\frac{\sqrt{14}}{2}$),
得kl+k2═4.
综上,恒有kl+k2=4,为定值.
点评 本题考查了椭圆的标准方程,考查了直线和圆锥曲线的关系,考查了分类讨论的数学思想方法,此类问题常用直线方程和圆锥曲线方程联立,利用一元二次方程的根与系数关系求解,考查了学生的计算能力,属难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $x=2kπ-\frac{π}{2}$,k∈Z | B. | $x=2kπ+\frac{π}{2}$,k∈Z | C. | x=2kπ,k∈Z | D. | x=2kπ+π,k∈Z |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com