精英家教网 > 高中数学 > 题目详情

【题目】函数同时满足:对于定义域上的任意,恒有对于定义域上的任意.当,恒有.则称函数理想函数,则下列三个函数中:

1

2

3

称为理想函数的有 (填序号)

【答案】3

【解析】

∵函数f(x)同时满足①对于定义域上的任意x,恒有f(x)+f(x)=0;

②对于定义域上的任意,恒有,则称函数f(x)理想函数”,

理想函数既是奇函数,又是减函数,

(1),是奇函数,但不是增函数,(1)不是理想函数”;

(2),,是偶函数,且在(∞,0)内是减函数,(0,+∞)内是增函数,(2)不是理想函数”;

(3),是奇函数,且是减函数,(3)能被称为理想函数”。

故答案为:(3).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线l与圆相交于不同的两点A,B.

(1)求线段AB的中点M的轨迹C的方程;

(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校某次N名学生的学科能力测评成绩(满分120分)的频率分布直方图如下,已知分数在100﹣110的学生数有21人
(1)求总人数N和分数在110﹣115分的人数n.;
(2)现准备从分数在110﹣115的n名学生(女生占 )中选3位分配给A老师进行指导,设随机变量ξ表示选出的3位学生中女生的人数,求ξ的分布列与数学期望Eξ;
(3)为了分析某个学生的学习状态,对其下一阶段的学习提供指导建议,对他前7次考试的数学成绩x、物理成绩y进行分析,该生7次考试成绩如表

数学(x)

88

83

117

92

108

100

112

物理(y)

94

91

108

96

104

101

106

已知该生的物理成绩y与数学成绩x是线性相关的,求出y关于x的线性回归方程 = x+ .若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据(x1 , y1),(x2 , y2),…,(xn , yn),其回归方程 = x+ 的斜率和截距的最小二乘估计分别为 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学在“三关心”(即关心家庭、关心学校、关心社会)的专题中,对个税起征点问题进行了学习调查.学校决定从高一年级800人,高二年级1000人,高三年级800人中按分层抽样的方法共抽取13人进行谈话,其中认为个税起征点为3000元的有3人,认为个税起征点为4000元的有6人,认为个税起征点为 5000元的有4人.

(1)求高一年级、高二年级、高三年级分别抽取多少人?

(2)从13人中选出3人,求至少有1人认为个税起征点为4000元的概率;

(3)记从13人中选出3人中认为个税起征点为4000元的人数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是公差不为0的等差数列,首项a1=1,且a1 , a2 , a4成等比数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=an+2 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象如图所示:

给出下列四个命题:

(1)方程有且仅有6个根;

(2)方程有且仅有3个根;

(3)方程有且仅有5个根;

(4)方程有且仅有4个根.

其中正确命题的个数是( )

A. 4个B. 3个C. 2个D. 1个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)求的极值;

(2) 函数有两个极值点,若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an},{bn}中,a1=2,b1=4且an , bn , an+1成等差数列,bn , an+1 , bn+1成等比数列(n∈N*
(1)求a2 , a3 , a4及b2 , b3 , b4;由此归纳出{an},{bn}的通项公式,并证明你的结论.
(2)若cn=log2),Sn=c1+c2+…+cn , 试问是否存在正整数m,使Sm≥5,若存在,求最小的正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=1,且nan+1=2Sn(n∈N*),数列{bn}满足b1= , b2= , 对任意n∈N* , 都有bn+12=bnbn+2
求数列{an}、{bn}的通项公式.

查看答案和解析>>

同步练习册答案