| A. | $\frac{33}{65}$ | B. | $-\frac{33}{65}$ | C. | $-\frac{16}{65}$ | D. | $\frac{16}{65}$ |
分析 由已知利用同角三角函数基本关系式可求sin(α+β),sin($β-\frac{π}{4}$)的值,由两角差的正弦函数公式即可计算得解$sin(α+\frac{π}{4})$的值.
解答 解:∵$α,β∈({\frac{3π}{4},π})$,$cos(α+β)=\frac{4}{5},cos(β-\frac{π}{4})=-\frac{5}{13}$,
∴α+β∈($\frac{3π}{2}$,2π),$β-\frac{π}{4}$∈($\frac{π}{2}$,$\frac{3π}{4}$),
∴sin(α+β)=-$\sqrt{1-co{s}^{2}(α+β)}$=-$\frac{3}{5}$,sin($β-\frac{π}{4}$)=$\sqrt{1-co{s}^{2}(β-\frac{π}{4})}$=$\frac{12}{13}$,
∴$sin(α+\frac{π}{4})$=sin[(α+β)-($β-\frac{π}{4}$)]=sin(α+β)cos($β-\frac{π}{4}$)-cos(α+β)sin($β-\frac{π}{4}$)
=(-$\frac{3}{5}$)×$(-\frac{5}{13})$-$\frac{4}{5}×\frac{12}{13}$=-$\frac{33}{65}$.
故选:B.
点评 本题主要考查了同角三角函数基本关系式,两角差的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{5}}{5}$ | B. | 3 | C. | $\frac{6\sqrt{5}}{5}$ | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $-\frac{4}{5}$ | C. | $\frac{2}{5}$ | D. | $-\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com