分析 由a1=$-\frac{1}{4}$,an=1-$\frac{1}{{{a_{n-1}}}}$,可得an=an+3,利用周期性即可得出.
解答 解:由a1=-$\frac{1}{4}$,且an=1-$\frac{1}{{{a_{n-1}}}}$(n>1),
得${a}_{2}=1-\frac{1}{{a}_{1}}=5$,${a}_{3}=1-\frac{1}{{a}_{2}}=\frac{4}{5}$,${a}_{4}=1-\frac{1}{{a}_{3}}=-\frac{1}{4}$,…
∴an=an+3,
则a2016=a3=$\frac{4}{5}$.
故答案为:$\frac{4}{5}$.
点评 本题考查了数列的递推关系、周期性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0)∪(1,+∞) | B. | (-∞,-1)∪(0,1) | C. | (-∞,-1)∪(1,+∞) | D. | (-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com