精英家教网 > 高中数学 > 题目详情
5.二项式${(x+\frac{2}{{\sqrt{x}}})^6}$的展开式中的常数项为240.

分析 首先写出展开式的通项,化简后,按照要求写出常数项.

解答 解:二项式${(x+\frac{2}{{\sqrt{x}}})^6}$的展开式的通项为${T}_{k+1}={C}_{6}^{k}{x}^{6-k}(\frac{2}{\sqrt{x}})^{k}$=${C}_{6}^{k}{2}^{k}{x}^{6-\frac{3}{2}k}$,令6-$\frac{3}{2}k$=0,得到k=4,所以展开式的常数项为${{T}_{5}=C}_{6}^{4}{2}^{4}$=240;
故答案为:240.

点评 本题考查了二项展开式的特征项求法;关键是正确写出展开式的通项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数f(x)=x3-3x在点(1,-2)处的切线斜率是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$),ω>0.
(1)若f(x)在(0,$\frac{π}{3}$)上单调递增,求ω的最大值;
(2)若f(x+θ),θ∈(0,π)是周期为2π的偶函数,求ω及θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的大小为(  )
A.120°B.90°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)9的展开式的第4项的系数是$-\frac{21}{2}$(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:
年龄2327394145495053565860
脂肪9.517.821.225.927.526.328.229.631.433.535.2
通过计算得到回归方程为$\stackrel{∧}{y}$=0.577x-0.448,利用这个方程,我们得到年龄37岁时体内脂肪含量为20.90%,那么数据20.90%的意义是(  )
A.某人年龄37岁,他体内脂肪含量为20.90%
B.某人年龄37岁,他体内脂肪含量为20.90%的概率最大
C.某人年龄37岁,他体内脂肪含量的期望值为20.90%
D.20.90%是对年龄为37岁的人群中的大部分人的体内脂肪含量所作出的估计

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在极坐标系中,圆C的方程为ρ=4cosθ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=3t+3}\\{y=4t+3}\end{array}\right.$(t为参数).
(1)写出圆C的直角坐标方程以及直线l的普通方程;
(2)求直线l被圆C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=a(x-1)2+lnx,a∈R.
(Ⅰ)当a=-$\frac{1}{4}$时,求函数y=f(x)的单调区间;
(Ⅱ)a=$\frac{1}{2}$时,令h(x)=f(x)-3lnx+x-$\frac{1}{2}$.求h(x)在[1,e]上的最大值和最小值;
(Ⅲ)若函数f(x)≤x-1对?x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.把座位编号为1,2,3,4,5,6的6张电影票分给甲、乙、丙、丁四个人,每人至少分一张,至多分两张,且分得的两张票必须是连号,那么不同分法种数为(  )
A.240B.144C.196D.288

查看答案和解析>>

同步练习册答案