精英家教网 > 高中数学 > 题目详情

 (1)当c<0时,若ac>bc,则a<b.请写出该命题的逆命题、否命题、逆否命题,并分别判断真假;

(2)p:对角线互相垂直的四边形是菱形,q:对角线互相平分的四边形是菱形,请写出“pq”,“pq”,“非p”形式的命题.


解 (1)逆命题:当c<0时,若a<b,则ac>bc(真命题)

否命题:当c<0时,若ac≤bc,则a≥b(真命题)

逆否命题:当c<0时,若a≥b,则ac≤bc(真命题).

(2)p或q:对角线互相垂直的四边形或对角线互相平分的四边形是菱形.

p且q:对角线互相垂直的四边形且对角线互相平分的四边形是菱形.

非p:对角线互相垂直的四边形不是菱形.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


如图所示,在△ABC中,射影定理可表示为ab·cos Cc·cos B,其中abc分别为角ABC的对边,类比上述定理,写出对空间四面体性质的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:


abc为一个三角形的三边,s(abc),且s2=2ab,试证:s<2a.

查看答案和解析>>

科目:高中数学 来源: 题型:


与命题“若xA,则yA”等价的命题是________.(填序号)

①若xA,则yA;②若yA,则xA

③若xA,则yA;④若yA,则xA.

查看答案和解析>>

科目:高中数学 来源: 题型:


下列四个命题中

①“k=1”是“函数y=cos2kx-sin2kx的最小正周期为π”的充要条件;

②“a=3”是“直线ax+2y+3a=0与直线3x+(a-1)ya-7相互垂直”的充要条件;

③函数y的最小值为2.

其中是假命题的为________(将你认为是假命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:


已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)xa2=0,x2+2ax-2a=0至少有一个方程有实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:


命题p:若abc>d,命题q:若efa<b,若p为真,q的否命题为真,则“cd”是“ef”的________条件.

查看答案和解析>>

科目:高中数学 来源: 题型:


判断下列命题的真假.

(1)对于任意x,若x-3=0,则x-3≤0;

(2)若x=3或x=5,则(x-3)(x-6)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:


AB分别是椭圆=1长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PAPF.求点P的坐标.

查看答案和解析>>

同步练习册答案