精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
2a2
x
-alnx(a∈R).
(1)当a≥0时,讨论函数f(x)的单调区间;
(2)设g(x)=x2-2bx+4-ln2,当a=1时,若对任意的x1,x2∈[1,e],都有f(x1)≥g(x2),求实数b的取值范围.
(3)求证:ln(n+1)<1+
1
2
+
1
3
+…+
1
n
+
n
n+1
考点:导数在最大值、最小值问题中的应用,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(1)分类讨论,求导函数,可得函数f(x)的单调区间;
(2)x∈[1,e],可得f(x)min=3-ln2,对任意的x1,x2∈[1,e],都有f(x1)≥g(x2),可得x∈[1,e]时,3-ln2≥x2-2bx+4-ln2,分离参数,利用函数的单调性,即可求出实数b的取值范围.
(3)当a=
1
2
时,x+
1
2x
-
1
2
lnx>
3
2
,取x=
k+1
k
,则ln
k+1
k
2
k
-
1
k+1
,再利用叠加法即可证明结论.
解答: (1)解:当a=0时,f(x)=x(x>0),f(x)在(0,+∞)上单调递增,
当a>0时,f′(x)=1-
2a2
x2
-
a
x
=
(x+a)(x-2a)
x2

∴f(x)在(0,2a)上单调递减,在(2a,+∞)上单调递增;
(2)解:当a=1时,f(x)=x+
2
x
-lnx,
∵x∈[1,e],∴f(x)min=3-ln2.
∵对任意的x1,x2∈[1,e],都有f(x1)≥g(x2),
∴x∈[1,e]时,3-ln2≥x2-2bx+4-ln2,
∴x∈[1,e]时,2b≥x+
1
x

∵y=x+
1
x
在[1,e]上单调递增,
∴b≥
e
2
+
1
2e

(3)证明:当a=
1
2
时,x+
1
2x
-
1
2
lnx>
3
2

取x=
k+1
k
,则ln
k+1
k
2
k
-
1
k+1

∴ln
2
1
2
1
-
1
2
,ln
3
2
2
2
-
1
3
,…ln
n+1
n
2
n
-
1
n+1

叠加得ln(n+1)<1+
1
2
+
1
3
+…+
1
n
+
n
n+1
点评:本题考查导数知识的综合应用,考查函数的单调性,考查函数的最值,考查不等式的证明,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=
f(x-5),x>0
2x+
π
6
0
cos3tdt,x≤0
,则f(2014)=(  )
A、
1
3
B、
1
6
C、
5
6
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+a,x∈[-1,1]
(1)若函数f(x)在定义域上不是单调函数,求实数a的取值范围;
(2)是否存在实数a,使函数f(x)的值域为[-2,2]?若存在,求实数a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,A={x|2≤x<4},B={x|3x-7≥8-2x},求:
(1)A∩B;
(2)(∁A)∩B;
(3)∁(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1,F2是左右焦点,求三角形PF1F2内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1.f(logax)=
a
a2-1
(x-x-1)

(1)求f(x)的解析式;
(2)判断f(x)的奇偶性与单调性;
(3)对于f(x),当x∈(-2,2)时,f(1-m)+f(1-2m)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an>0,其前n项和为Sn,且Sn=
1
8
(an+2)2
(1)求证数列{an}为等差数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数g(x)=ax2-2ax+b+1(a>0)在区间[2,3]上有最大值4,最小值1.
(1)求函数g(x)的解析式;
(2)设f(x)=
g(x)
x
.若f(2x)-k•2x≥0在x∈[-1,1]时恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC,若有∠A>∠B,则下列不等式中
①sin∠A>sin∠B; ②cos∠A<cos∠B; ③sin2∠A>sin2∠B; ④cos2A<cos2∠B
你认为正确的序号为
 

查看答案和解析>>

同步练习册答案