精英家教网 > 高中数学 > 题目详情
7. 如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个数数字,从图中可以得到这10位同学身高的中位数是162.

分析 根据茎叶图中的数据,结合中位数的概念,即可求出结果.

解答 解:根据茎叶图中的数据,得;
这10位同学的身高按从小到大的顺序排列,
排在第5、6的是161、163,
所以,它们的中位数是$\frac{161+163}{2}$=162.
故答案为:162.

点评 本题考查了中位数的概念与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a,b,共可得到lga-lgb的不同值的个数是18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列结论正确的是(  )
A.若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一实数λ使$\overrightarrow{a}$=λ$\overrightarrow{b}$
B.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,则“$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为钝角”的充要条件是“$\overrightarrow{a}$•$\overrightarrow{b}$<0”
C.若命题p:?x∈R,x2-x+1<0,则¬p:?x∈R,x2-x+1>0
D.“若θ=$\frac{π}{3}$,则cosθ=$\frac{1}{2}$”的否命题为“若θ≠$\frac{π}{3}$,则cosθ$≠\frac{1}{2}$”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知A(3,0),B(0,3)C(cosα,sinα).
(1)若$\overrightarrow{AC}$•$\overrightarrow{BC}$=-1,求sin(α+$\frac{π}{4}$)的值;
(2)若|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{13}$,且α∈(0,π),求$\overrightarrow{OB}$与$\overrightarrow{OC}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知C${\;}_{n}^{0}$+3C${\;}_{n}^{1}$+32C${\;}_{n}^{2}$+…+3nC${\;}_{n}^{n}$=1024,则C${\;}_{n+1}^{2}$+C${\;}_{n+1}^{3}$的值为(  )
A.21B.35C.56D.210

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知t(单位:秒)时间与S(单位:米)路程之间的关系是:S(t)=3t2+1,则在t=2秒时的瞬时速度是12m/s.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为(  )
A.4$\sqrt{2}$B.4C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与圆x2+y2-4x+2=0,有公共点,则该双曲线离心率的取值范围是(  )
A.(1,2]B.[$\sqrt{2}$,+∞)C.(1,$\sqrt{2}$]D.(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若直线a,b没有公共点,则下列命题:
①存在于a,b平行的直线;
②存在与a,b垂直的平面;
③存在经过a而与b垂直的平面;
④存在经过a而与b平行的平面,
其中正确的命题序号是②④.

查看答案和解析>>

同步练习册答案