精英家教网 > 高中数学 > 题目详情
19.直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为(  )
A.4$\sqrt{2}$B.4C.2$\sqrt{2}$D.2

分析 由题意首先求出第一象限的交点,然后利用定积分表示围成的图形的面积,然后计算即可.

解答 解:先根据题意画出图形,两个图形在第一象限的交点为(2,8),
所以曲线y=x3与直线y=4x在第一象限所围成的图形的面积是∫02(4x-x3)dx,
而∫02(4x-x3)dx=(2x2-$\frac{1}{4}$x4)|02=8-4=4
∴曲封闭图形的面积是4,
故选B.

点评 本题考查学生利用定积分求曲边梯形的面积,会求出原函数的能力,同时考查了数形结合的思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.函数f(x)=lg(x2-2x-3)的定义域为集合A,函数g(x)=2x-a(x≤2)的值域为集合B.
(Ⅰ)求集合A,B;
(Ⅱ)已知命题p:m∈A,命题q:m∈B,若?p是?q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设Sn是公差不为0的等差数列{an}的前n项和,S3=a22,且S1,S2,S4成等比数列,则a10=(  )
A.15B.19C.21D.30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7. 如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个数数字,从图中可以得到这10位同学身高的中位数是162.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.甲、乙两人分别从四种不同品牌的商品中选择两种,则甲、乙所选的商品中恰有一种品牌相同的选法种数是(  )
A.30B.24C.12D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=2sinx,x∈[0,2π]与y=$\frac{3}{2}$的交点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的首项a1=1,公差d>0,且其第2项、第5项、第14项成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2}{{a}_{n+1}{a}_{n+2}}$,求数列{bn}的前n项和Tn,并证明:$\frac{2}{15}$≤Tn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\sqrt{3}$cos2x+sinxcosx-$\frac{\sqrt{3}}{2}$.
(1)求函数f(x)的最小正周期T,并求出函数f(x)在区间上的单调递增区间;
(2)求在[0,10π)内使f(x)取到最大值的所有x的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果a<b<0,那么下列不成立的是(  )
A.a2>b2B.a3>b3C.$\sqrt{{a}^{2}}$>$\sqrt{{b}^{2}}$D.a-b<b-a

查看答案和解析>>

同步练习册答案