精英家教网 > 高中数学 > 题目详情
已知三角形ABC中,AB=AC,BC=4,∠BAC=120°,
BE
=3
EC
,若P是BC边上的动点,则
AP
AE
的取值范围是
 
考点:平面向量数量积的运算
专题:函数的性质及应用
分析:运图形得出
AB
BC
=
4
3
×4×(-
3
2
)=-8,
BE
=
3
BC
4
BP
=λ
BC
,0≤λ≤1化简得出
AP
AE
=(
AB
+
BP
•(
AB
+BE)
=
.
AB
2
BC•
AB
+
4
BC
2+3×
AB
BC
4
,运用数量积求解即可.
解答: 解:∵三角形ABC中,AB=AC,BC=4,∠BAC=120°
∴AB=
4
3
,∠ABC=30°,
求出
AB
BC
=
4
3
×4×(-
3
2
)=-8,
BE
=3
EC

BE
=
3
BC
4
BP
=λ
BC
,0≤λ≤1
AP
AE
=(
AB
+
BP
•(
AB
+BE)
=
.
AB
2
BC•
AB
+
4
BC
2+3×
AB
BC
4

AP
AE
=
16
3
-8λ+12λ+
3
4
×(-8)=4λ-
2
3
,0≤λ≤1
根据单调性得出:
AP
AE
的取值范围-
2
3
≤λ≤
10
3

故答案为:[-
2
3
10
3
]

点评:本题考查了平面向量的运用算,向量的分解合成,数量积的运用,属于中档题,关键是转化为统一的向量求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A=[0,1),B=[1,2],函数f(x)=
2x,(x∈A)
4-2x,(x∈B)
,x0∈A,且f[f(x0)]∈A,则x0 的取值范围是(  )
A、(
2
3
,1)
B、[0,
3
4
]
C、(log2
3
2
,1)
D、(log32,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算a*b,a*b
a,a≤b
b,a>b
,例如1*2=1,已知函数f(x)=1*ax(0<a<1)且f(4)=
1
2014
,则f(2)=(  )
A、-1007
B、-1006
C、1007
D、
1
2014

查看答案和解析>>

科目:高中数学 来源: 题型:

如图(1),在边长为2的正方形ABCD中,E是边AB的中点.将△ADE沿DE折起使得平面ADE⊥平面BCDE,如图(2),F是折叠后AC的中点.

(Ⅰ)求证:BF∥平面ADE;
(Ⅱ)求二面角E-AB-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若|
AB
|=2,|
AC
|=3,∠BAC=60°,则
BA
BC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则(
PA
+
PB
)•
PC
的最小值为(  )
A、
9
2
B、9
C、-
9
2
D、-9

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,曲线E是由抛物线弧E1:y2=4x(0≤x≤
2
3
)与椭圆弧E2
x2
a2
+
y2
b2
=1(
2
3
≤x≤a)所围成的封闭曲线,且E1与E2有相同的焦点.
(Ⅰ)求椭圆弧E2的方程;
(Ⅱ)设过点F(1,0)的直线与曲线E交于A,B两点,|FA|=r1,|FB|=r2,且∠AFx=α(0≤α≤π),试用cosα表示r1;并求
r1
r2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
9
=1(a>0)的离心率为2,则a=
 

查看答案和解析>>

同步练习册答案