精英家教网 > 高中数学 > 题目详情
8.给出定义,若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则称函数y=g(x)的图象关于点(a,b)成中心对称,已知函数f(x)=$\frac{2x+1-a}{a-x}$(x≠1),定义域为A.
(Ⅰ)判断y=f(x)的图象是否关于点(a,-2)成中心对称;
(Ⅱ)当a=1时,求f(sinx)的值域;
(Ⅲ)对于任意的xi∈A,设计构造过程:x2=f(x1),x3=f(x2),…,xn+1=f(xn),如果xi∈A(i=2,3,4,…)构造过程将继续下去,如果xi∉A,构造过程将停止,若对任意xi∈A,构造过程可以无限进行下去,求a的值.

分析 (1)根据中心对称的定义和性质证明y=f(x)的图象关于点(a,-2)成中心对称;
(2)根据分式函数的性质,利用换元法即求函数的值域;
(3)根据设计过程,进行推理即可.

解答 (1)∵f(x)=$\frac{2x+1-a}{a-x}$,
∴f(a+x)+f(a-x)=$\frac{2(a+x)+1-a}{a-(a+x)}$+$\frac{2(a-x)+1-a}{a-(a-x)}$=-$\frac{2x+1+a}{x}$+$\frac{a-2x+1}{x}$=-2-$\frac{1}{x}$-$\frac{a}{x}$+$\frac{1}{x}$+$\frac{a}{x}$-2=-4=2×(-2),
由已知定理,得y=f(x)的图象关于点(a,-2)成中心对称.(3分)
(2)当a=1时,f(x)=$\frac{2x+1-a}{a-x}$=$\frac{2x}{1-x}$=$\frac{2(x-1)+2}{1-x}$=-2-$\frac{2}{x-1}$,
设t=sinx,则-1≤t<1,
则则函数f(x)在-1≤t<1上为增函数,
则当x=-1时取得最小值,此时y=-2+1=-1,
则y≥-1,即函数的值域为[-1,+∞)(7分)
(3)∵构造过程可以无限进行下去,∴f(x)=$\frac{2x+1-a}{a-x}$≠a对任意x∈A恒成立.
∴方程$\frac{2x+1-a}{a-x}$=a无解,即方程(a+2)x=a2+a-1无解或有唯一解x=a.
∴$\left\{\begin{array}{l}{a+2=0}\\{{a}^{2}+a-1≠0}\end{array}\right.$或$\left\{\begin{array}{l}{a+2≠0}\\{(a+2)a={a}^{2}+a-1}\end{array}\right.$,
由此得到a=-2或a=-1(13分)

点评 本例考查的数学知识点有,函数的对称性,函数的定义域和值域的求法;数学思想有极限思想,方程思想;是一道函数综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,在正方体ABCD-A1B1C1D1中,AB=2,点E是BC的中点.
(Ⅰ)求线段DE的长;
(Ⅱ)求直线A1E与平面ADD1A1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为备战“全国高中数学联赛”,我市某高中拟成立两个“数学竞赛班”,经过学校预选,选出40名学生,编成A,B两个班,分别由两位教师担任教练进行培训;经过两个月的培训,参加了市里组织的数学竞赛初赛(只有经过初赛,取得相应名次,才能取得参加省统一组织的“全国高中数学联赛”复赛资格),这40名学生的初赛成绩的茎叶图如图:
市数学会规定:140分以上(含140分)为市级一等奖,135分以上(含135分)为市级二等奖,100分以上(含100分)为市级三等奖.
(1)由茎叶图判断A班和B班的平均分$\overline{{x}_{A}}$,$\overline{{x}_{B}}$的大小(只需写出结论);
(2)按照规则:获得市一等奖、二等奖的同学才能获得省里组织的“全国数学联赛”复赛资格,我们称这些同学为“种子选手”,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为称为‘种子’选手”与班级有关?
 A班B班合计
种子选手   
非种子选手   
合计   
(3)在获市级一等奖的同学中选出3人,求至少含有1名A班同学的概率.
下面临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=$\left\{\begin{array}{l}{(1-2a)x+5a,x<1}\\{lo{g}_{7}x,x≥1}\end{array}\right.$的值域为R,那么a的取值范围是(  )
A.(-∞,-$\frac{1}{3}$]B.(-1,$\frac{1}{2}$)C.[-$\frac{1}{3}$,$\frac{1}{2}$)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,正方形ABCD的边长为3,M为DC的中点,若N为正方形内任意一点(含边界),则$\overrightarrow{AM}$•$\overrightarrow{AN}$的最大值为$\frac{27}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意n∈N*均有$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+…+$\frac{{c}_{n}}{{b}_{n}}$=an+1成立,求c1+c2+c3+…+c2015的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等差数列{an}中,前n项和为Sn,a1>0,a1007+a1008=0,则当Sn取最大值时,n=(  )
A.1007B.1008C.2014D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设m、n是不同的直线,α、β、γ是不同的平的,有以下四个命题:
①若α∥β,α∥γ,则β∥γ   ②若α⊥β,m∥α,则m⊥β
③若m∥n,n?α,则m∥α    ④若m⊥α,m∥β,则α⊥β
其中正确命题的序号是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.数列{an}的前n项和为Sn,已知a1=1,且an+1=λSn-Sn+1,其中λ是常数,若{an}是递增数列,则λ的取值范围是λ>3.

查看答案和解析>>

同步练习册答案