精英家教网 > 高中数学 > 题目详情
13.已知空间向量$\overrightarrow{a}$=(1,n,2),$\overrightarrow{b}$=(2,1,2),若2$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$垂直,则|$\overrightarrow{a}$|等于(  )
A.$\frac{5\sqrt{3}}{2}$B.$\frac{\sqrt{37}}{2}$C.$\frac{\sqrt{29}}{2}$D.$\frac{3\sqrt{53}}{2}$

分析 利用向量的坐标运算、向量垂直与数量积的关系、向量模的计算公式即可得出.

解答 解:2$\overrightarrow{a}$-$\overrightarrow{b}$=2(1,n,2)-(2,1,2)=(0,2n-1,2),
∵2$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$垂直,
∴0+(2n-1)+4=0,
解得n=-$\frac{3}{2}$.
∴$\overrightarrow{a}$=(1,-$\frac{3}{2}$,2),
∴|$\overrightarrow{a}$|=$\sqrt{{1}^{2}+(-\frac{3}{2})^{2}+{2}^{2}}$=$\frac{\sqrt{29}}{2}$,
故选:C.

点评 本题考查了向量的坐标运算、向量垂直与数量积的关系、向量模的计算公式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(2,0),离心率为$\frac{\sqrt{2}}{2}$.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)设M(x1,y1),N(x2,y2),若|x1-x2|=$\frac{2\sqrt{10}}{3}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),以抛物线y2=8x的焦点为顶点,且离心率为$\frac{1}{2}$
(1)求椭圆E的方程;
(2)已知A、B为椭圆上的点,且直线AB垂直于x轴,直线l:x=4与x轴交于点N,直线AF与BN交于点M.
(ⅰ)求证:点M恒在椭圆C上; 
(ⅱ)求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序图,若输出i的值是11,则判断框中的横线上可以填入的最大整数为(  )
A.26B.25C.24D.23

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l1:ax+3y+1=0,l2:2x+(a+1)y+1=0,若l1∥l2,则实数a的值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的函数f(x)满足如下条件:①函数f(x)的图象关于y轴对称;②对于任意x∈R,f(2+x)-f(2-x)=0;③当x∈[0,2]时,f(x)=x.若过点(-1,0)的直线l与函数y=f(x)的图象在x∈[0,16]上恰有8个交点,在直线l斜率k的取值范围是(  )
A.($\frac{2}{19}$,$\frac{2}{15}$)B.(0,$\frac{15}{2}$)C.(0,$\frac{2}{17}$)D.(0,$\frac{17}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知m=0.91.1,n=1.10.9,p=log0.91.1,则m、n、p的大小关系(  )
A.m<n<p.B.m<p<nC.p<m<nD.p<n<m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}的前n项和为Sn,当Sn=n2-n时,a5=(  )
A.20B.12C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.计算$\frac{i}{1-i}$=-(  )
A.$\frac{-1+i}{2}$B.$\frac{-1-i}{2}$C.$\frac{1-i}{2}$D.$\frac{1+i}{2}$

查看答案和解析>>

同步练习册答案