精英家教网 > 高中数学 > 题目详情
如图,三棱锥S-ABC中,SA=AB=AC=2,∠ASB=∠BSC=∠CSA=30°,M、N分别为SB、SC上的点,则△AMN周长最小值为
 
考点:点、线、面间的距离计算
专题:空间位置关系与距离
分析:把三棱锥的侧面沿其中一条侧棱展开成平面,则△AMN周长最小值为2
2
解答: 解:将三棱锥S-ABC侧面沿SA剪开展成如下平面图形,
观察图形知:
当A,M,N三点共线时,△AMN的周长最小,
此时,△AMN的周长=AN+MN+AM=
4+4
=2
2

故答案为:2
2
点评:本题考查三角形周长的最小值的求法,是中档题,解题的关键是把三棱锥展成平面图形,合理地化空间问题为平面问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数{an}满足:a1+a2+a3+…+an=n-an(n∈N*).
(1)求证:数列{an-1}是等比数列;
(2)若bn=(2-n)(an-1),且对任意的正整数n,都有bn+
1
4
t≤t2,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)若函数f(x)=
x
1+x2
,又记:f1(x)=f(x),fk+1(x)=f(fk(x)),k=1,2,3,…,则f2014(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

[
n
]表示不超过
n
的最大整数.
S1=[
1
]
+[
2
]
+[
3
]
=3,
S2=[
4
]
+[
5
]
+[
6
]
+[
7
]
+[
8
]
=10,
S3=[
9
]
+[
10
]
+[
11
]
+[
12
]
+[
13
]
+[
14
]
+[
15
]
=21,…,
那么Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某算法的伪代码如图所示,若输出y的值为1,则输入x的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若某程序框图如图所示,则该程序运行后输出的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+x-a,x∈[-1,1]的最大值为M(a),则当a∈[-1,1]时M(a)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个正三棱柱的每一条棱长都是a,则经过底面一边和相对侧棱的一个端点的截面(即图中△ACD)的面积为(  )
A、
7
4
a2
B、
7
2
a2
C、
6
3
a2
D、
7
a2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,AB=2,AA1=AD=1,点E、F、G分别是各自所在棱的中点.
(1)在棱A1D1所在的直线上是否存在一点P,使得PE与平面B1FG平行?若存在,确定点P的位置,并证明;否则说明理由.
(2)求点B1到平面EFG的距离.

查看答案和解析>>

同步练习册答案