精英家教网 > 高中数学 > 题目详情
设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,点A为椭圆上一点,当△AF1F2的面积最大时,△AF1F2为等边三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设动直线y=kx+m与椭圆有且只有一个公共点P,且与直线x=4相交于点Q,若x轴上存在一定点M(1,0),使得
PM
QM
=0,求椭圆的方程.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程
分析:(Ⅰ)由椭圆性质可知当点A为椭圆短轴端点时△AF1F2的面试最大,得到a,c的关系,则答案可求;
(Ⅱ)由椭圆离心率设出椭圆方程3x2+4y2-12t=0,和直线方程联立得到关于x的一元二次方程,由判别式等于0得到m,k,t的关系,用m,k表示P的坐标,结合x轴上存在一定点M(1,0),使得
PM
QM
=0求得t的值,则椭圆方程可求.
解答: 解:(Ⅰ)当点A为椭圆短轴端点时△AF1F2的面试最大.
此时a=2c,离心率e=
1
2

(Ⅱ)∵e=
c
a
=
1
2

c2
a2
=
a2-b2
a2
=
1
4
b2
a2
=
3
4

可设b2=3ta2=4t,
∴椭圆的方程为3x2+4y2-12t=0.
3x2+4y2-12t=0
y=kx+m
,得(3+4k2)x2+8kmx+4m2-12t=0.
∵动直线y=kx+m与椭圆有且只有一个公共点P,
∴△=0,即64k2m2-4(3+4m2)(4m2-12t)=0.
整理得m2=3t+4k2t.
设P(x1,y1),则有x1=-
8km
2(3+4k2)
=-
4km
3+4k2
y1=kx1+m=
3m
3+4k2

∴P(-
4km
3+4k2
3m
3+4k2
).
又M(1,0),Q(4,4k+m),
若x轴上存在一定点M(1,0),使得PM⊥QM,
(1+
4km
3+4k2
,-
3m
3+4k2
)•(-3,-(4k+m))
=0恒成立.
整理得3+4k2=m2
∴3+4k2=3t+4k2t恒成立,故t=1,
所求椭圆方程为
x2
4
+
y2
3
=1
点评:本题主要考查了直线与圆锥曲线的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,是处理这类问题的最为常用的方法,但圆锥曲线的特点是计算量比较大,要求考试具备较强的运算推理的能力,是压轴题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+b
(1)若-2≤a≤4,-2≤b≤4,且a∈Z,b∈Z,求方程f(x)=0无实根的概率;
(2)若|a|≤1,|b|≤1,求方程f(x)=
1
4
b2+b-
1
4
无实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三菱柱ABC-A1B1C1中,CA⊥CB,CA=CB=1,AA1=2,且N是棱A1B1的中点,
(Ⅰ)求证:A1B⊥C1N;
(Ⅱ)求直线A1B和直线B1C夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x满足不等式(log2x)2-log2x2≤0,求函数y=4x-2x+2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半径为1的定圆⊙P的圆心P到定直线l的距离为2,Q是l上一动点,⊙Q与⊙P相外切,⊙Q交l于M、N两点,对于任意直径MN,平面上恒有一定点A,使得∠MAN为定值.求∠MAN的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学有6名爱好篮球的高三男生,现在考察他们的投篮水平与打球年限的关系,每人罚篮10次,其打球年限与投中球数如下表:
学生编号12345
打球年限x/年35679
投中球数y/个23345
(Ⅰ)求投中球数y关于打球年限x(x∈N,0≤x≤16)的线性回归方程,若第6名同学的打球年限为11年,试估计他的投中球数(精确到整数).
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
a
=
.
y
-
b
.
x
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2

(Ⅱ)现在从高三年级大量男生中调查出打球年限超过3年的学生所占比例为
1
4
,将上述的比例视为概率.现采用随机抽样方法在男生中每次抽取1名,抽取3次,记被抽取的3名男生中打球年限超过3年的人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四边形ABCD中,AB∥CD,∠ABD=30°,AB=2CD=2AD=2DE=2,DE⊥平面ABCD,EF∥BD,且BD=2EF.
(Ⅰ)求证:平面ADE⊥平面BDEF;
(Ⅱ)若二面角C-BF-D的大小为60°,求CF与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD为矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(1)求证:平面PAD与平面PAB垂直;
(2)求直线PC与直线AB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有四个数,前三个数成等差数列,后三个数成等比数列,且这四个数的首末两项之和为37,中间两项和为
36,求这四个数.

查看答案和解析>>

同步练习册答案