精英家教网 > 高中数学 > 题目详情
设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-2x-2与g(x)=-x+n在[-1,3]上是“关联函数”,则n的取值范围是(  )
A、(-∞,0]
B、(-∞,4]
C、(-
9
4
,0]
D、(-
9
4
,4]
考点:抽象函数及其应用
专题:函数的性质及应用
分析:由题意可得h(x)=f(x)-g(x)=x2-x-2-n在[-1,3]上有两个不同的零点,则有
h(-1)≥0
h(3)≥0
h(
1
2
)<0
,由此求得n的取值范围.
解答: 解:∵f(x)=x2-2x-2与g(x)=-x+n在[-1,3]上是“关联函数”,
故函数y=h(x)=f(x)-g(x)=x2-x-2-n在[-1,3]上有两个不同的零点,
则有
h(-1)≥0
h(3)≥0
h(
1
2
)<0
,即
-n≥0
4-n≥0
-
9
4
-n<0
,解得-
9
4
<n≤0.
故选C.
点评:本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在极坐标系中,点P是曲线C:ρ=2cosθ上的一点,则P的极坐标可能是(  )
A、(2,0)
B、(2,
π
2
C、(1,
π
4
D、(1,
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校要从数学竞赛初赛成绩相同的四名学生(其中2名男生,2名女生)中,随机选出2名学生去参加决赛,则选出的2名学生恰好为1名男生和1名女生的概率为(  )
A、
1
6
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体的棱长为1,且其顶点都在一个球面上,则该球的表面积为(  )
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=5,与y=-1在区间[0,
ω
]上截曲线y=Asinωx+B(A>0,B>0,ω>0)所得弦长相等且不为零,则下列描述正确的是(  )
A、A≤
2
3
,B=
5
2
B、A≤3,B=2
C、A>
3
2
,B=
5
2
D、A>3,B=2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
(3x-2)2
的导数是(  )
A、
6
(3x-2)3
B、
6
(3x-2)2
C、-
6
(3x-2)3
D、-
6
(3x-2)2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数y=f(x),当x>0,f(x)>1,对任意a,b∈R有f(a+b)=f(a)•f(b) 
(1)求f(0);
(2)证明对x∈R,有f(x)>0;
(3)证明f(x)在R上为增函数;
(4)若f(x)•f(2x-x2)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=
1
2
CD=1.现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图2.
(1)求证:AM∥平面BEC;
(2)求证:BC⊥平面BDE;

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB,CD均为圆O的直径,CE⊥圆O所在的平面,BF∥CE,求证:
(1)BC⊥平面ACE;
(2)面BDF∥平面ACE.

查看答案和解析>>

同步练习册答案