4£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=t\\ y=m+t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ3¦Ñ2cos2¦È+¦Ñ2sin2¦È=12£¬ÇÒÇúÏßCµÄϽ¹µãFÔÚÖ±ÏßlÉÏ£®
£¨1£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó|FA|•|FB|µÄÖµ£»
£¨2£©ÇóÇúÏßCµÄÄÚ½Ó¾ØÐεÄÖܳ¤µÄ×î´óÖµ£®

·ÖÎö £¨1£©µãFµÄÖ±½Ç×ø±êΪ£¨0£¬-2$\sqrt{2}$£©£¬Çó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ3x2+y2=12£¬Çó³öFµÄ×ø±ê£¬´Ó¶øÇó³ömµÄÖµ£¬½«Ö±ÏßlµÄ±ê×¼²ÎÊý·½³Ì´úÈëÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÖУ¬µÃt¡ä2-2t¡ä-2=0£¬ÓÉ´ËÄÜÇó³ö|FA|•|FB|£®
£¨2£©ÉèÍÖÔ²CµÄÄÚ½Ó¾ØÐÎÔÚµÚÒ»ÏóÏ޵Ķ¥µãΪ£¨2cos¦È£¬2$\sqrt{3}$sin¦È£©£¬ÓɶԳÆÐԿɵÃÍÖÔ²CµÄÄÚ½Ó¾ØÐεÄÖܳ¤Îª8cos¦È+8$\sqrt{3}$sin¦È=16sin£¨¦È+$\frac{¦Ð}{6}$£©£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄÄÚ½Ó¾ØÐεÄÖܳ¤µÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ3¦Ñ2cos2¦È+¦Ñ2sin2¦È=12£¬
¡àÖ±½Ç×ø±ê·½³ÌΪ3x2+y2=12£¬¼´$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{12}$=1£¬
¡àF£¨0£¬-2$\sqrt{2}$£©£¬
ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{0=t}\\{-2\sqrt{2}=m+t}\end{array}\right.$£¬½âµÃm=-2$\sqrt{2}$£¬
¡ß½«Ö±ÏßlµÄ±ê×¼²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t¡ä}\\{y=-2\sqrt{2}+\frac{\sqrt{2}}{2}t¡ä}\end{array}\right.$£¨t¡äΪ²ÎÊý£©´úÈëÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÖУ¬
µÃt¡ä2-2t¡ä-2=0£¬¡àt¡äA•t¡äB=-2
¡à|FA|•|FB|=2£®
£¨2£©ÉèÍÖÔ²CµÄÄÚ½Ó¾ØÐÎÔÚµÚÒ»ÏóÏ޵Ķ¥µãΪ£¨2cos¦È£¬2$\sqrt{3}$sin¦È£©£¬
ÓɶԳÆÐԿɵÃÍÖÔ²CµÄÄÚ½Ó¾ØÐεÄÖܳ¤Îª8cos¦È+8$\sqrt{3}$sin¦È=16sin£¨¦È+$\frac{¦Ð}{6}$£©£¬
¡àµ±¦È+$\frac{¦Ð}{6}$=$\frac{¦Ð}{2}$£¬¼´¦È=$\frac{¦Ð}{3}$ʱ£¬ÍÖÔ²CµÄÄÚ½Ó¾ØÐεÄÖܳ¤È¡µÃ×î´óÖµ16£®

µãÆÀ ±¾Ì⿼²éÁ½Ï߶γ˻ýµÄÇ󷨣¬¿¼²éÍÖÔ²µÄÄÚ½Ó֪ʶµÄÖܳ¤µÄ×î´óÖµµÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èôº¯Êýf£¨x£©=3sinx-4cosx£¬Ôòf¡ä£¨$\frac{3¦Ð}{2}$£©=-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÓòRÉϵÄżº¯Êý£¬ÇÒÔÚÇø¼ä[0£¬+¡Þ£©µ¥µ÷µÝÔö£¬ÈôʵÊýaÂú×ãf£¨log2a£©+f£¨log2$\frac{1}{a}$£©¡Ü2f£¨1£©£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬2]B£®£¨0£¬$\frac{1}{2}$]C£®[$\frac{1}{2}£¬2$]D£®£¨0£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®2$\sqrt{2}+\frac{2¦Ð}{3}$B£®4$+\frac{2¦Ð}{3}$C£®2$\sqrt{2}+\frac{¦Ð}{3}$D£®4$+\frac{¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªµãA£¨1£¬0£©£¬B£¨0£¬-1£©£¬PÊÇÇúÏßy=$\sqrt{1{-x}^{2}}$ÉϵÄÒ»¸ö¶¯µã£¬Ôò$\overrightarrow{AP}$•$\overrightarrow{BP}$µÄ×î´óÖµÊÇ1$+\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÈôÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow{b}$µÄ¼Ð½ÇΪ150¡ã£¬|$\overrightarrow{a}$|=$\sqrt{3}$£¬|$\overrightarrow{b}$|=4£¬Ôò|2$\overrightarrow{a}$+$\overrightarrow{b}$|=£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬DE=B1F=$\frac{1}{3}$DD1£®ÇóÖ¤£º
£¨1£©Æ½ÃæACE¡ÍÆ½ÃæBB1D1D£»
£¨2£©Æ½ÃæEAC¡ÎÆ½ÃæFA1C1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èçͼ£¬Ä³¼¸ºÎÌåµÄÈýÊÓͼÊÇÈý¸ö°ë¾¶ÏàµÈµÄÔ²£¬ÇÒÿ¸öÔ²ÖеÄÁ½Ìõ°ë¾¶»¥Ïà´¹Ö±£¬Èô¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ$\frac{7¦Ð}{6}$£¬ÔòËüµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{17¦Ð}{4}$B£®4¦ÐC£®$\frac{15¦Ð}{4}$D£®$\frac{7¦Ð}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Éèa=£¨$\frac{1}{2}$£©${\;}^{\frac{1}{3}}$£¬b=£¨$\frac{1}{3}$£©${\;}^{\frac{1}{2}}$£¬c=ln£¨$\frac{3}{¦Ð}$£©£¬Ôòa£¾b£¾c£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸