精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)是定义域R上的偶函数,且在区间[0,+∞)单调递增,若实数a满足f(log2a)+f(log2$\frac{1}{a}$)≤2f(1),则a的取值范围是(  )
A.(-∞,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2},2$]D.(0,2]

分析 根据函数奇偶性和单调性的关系将不等式进行转化求解即可.

解答 解:∵函数f(x)是定义域R在上的偶函数,
∴由f(log2a)+f(log2$\frac{1}{a}$)≤2f(1),得f(log2a)+f(-log2a)≤2f(1),
即f(log2a)+f(log2a)=2f(log2a)≤2f(1),
则f(log2a)≤f(1),
∵在区间[0,+∞)单调递增,
∴不等式等价为f(|log2a|)≤f(1),
即|log2a|≤1,则-1≤log2a≤1,
得$\frac{1}{2}$≤a≤2,
故选:C

点评 本题主要考查不等式的求解,根据函数奇偶性和单调性的关系将不等式进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)的导函数f′(x),满足关系式f(x)=x2+2xf′(2)-lnx,则f(1)的值为(  )
A.-2B.-4C.-6D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{m•{4}^{x}+1}{{2}^{x}}$-m(m∈R).
(1)若函数f(x)有零点,求实数m的取值范围;
(2)若对任意的x∈[-1,0]都有f(x)≥0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,6个点可以连15条弦,请你探究其中规律,如果圆周上有10个点.则可以连45条弦.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|2x-a|+|2x-4|,g(x)=|x-2|+1.
(1)a=0时,解不等式f(x)≥8;
(2)若对任意x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了研究某种细菌在特定条件下随时间变化的繁殖情况,得到如表所示实验数据,若t与y线性相关.
天数t(天)  4 5
繁殖个数y(千个)  6 8 912 
(1)求y关于t的回归直线方程;
(2)预测t=8时细菌繁殖的个数.
(参考公式:$b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$,$\widehat{y}=\widehat{b}x+\widehat{a}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若实数x,y满足x2<y2,则下列不等式成立的是(  )
A.x<yB.-x<yC.$\frac{1}{x}$<$\frac{1}{y}$D.|x|<|y|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l的参数方程为$\left\{\begin{array}{l}x=t\\ y=m+t\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+ρ2sin2θ=12,且曲线C的下焦点F在直线l上.
(1)若直线l与曲线C交于A,B两点,求|FA|•|FB|的值;
(2)求曲线C的内接矩形的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设点A(0,1),B(2,-1),点C在双曲线M:$\frac{{x}^{2}}{4}$-y2=1上,则使△ABC的面积为3的点C的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案