精英家教网 > 高中数学 > 题目详情
20.为了研究某种细菌在特定条件下随时间变化的繁殖情况,得到如表所示实验数据,若t与y线性相关.
天数t(天)  4 5
繁殖个数y(千个)  6 8 912 
(1)求y关于t的回归直线方程;
(2)预测t=8时细菌繁殖的个数.
(参考公式:$b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$,$\widehat{y}=\widehat{b}x+\widehat{a}$)

分析 (1)求出回归系数,即可求y关于t的回归直线方程;
(2)当t=8时,求出y,即可预测t=8时细菌繁殖的个数.

解答 解:(1)由已知$\overline{t}$=5,$\overline{y}$=8,则5$\overline{t}$•$\overline{y}$=200,5$\overline{t}$2=125,
$\widehat{b}$=$\frac{217-200}{135-125}$=1.7所以$\widehat{a}$=-0.5,
所以y关于t的回归直线方程y=1.7t-0.5;
(2)当t=8时,y=1.7×8-0.5=13.1(千个).

点评 本题考查线性回归方程,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x+$\frac{1}{2}$)为奇函数,g(x)=f(x)+1,若an=g($\frac{n}{2017}$),则数列{an}的前2016项和为(  )
A.2017B.2016C.2015D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.同时抛掷甲、乙两颗骰子.
(1)求事件A“甲的点数大于乙的点数”的概率;
(2)若以抛掷甲、乙两颗骰子点数m,n作为点P的坐标(m,n),求事件B“P落在圆x2+y2=25内”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,倾斜角为α的直线l过点M(-2,-4),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ.
(1)写出直线l的参数方程(α为常数)和曲线C的直角坐标方程;
(2)若直线l与C交于A、B两点,且|MA|•|MB|=40,求倾斜角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)是定义域R上的偶函数,且在区间[0,+∞)单调递增,若实数a满足f(log2a)+f(log2$\frac{1}{a}$)≤2f(1),则a的取值范围是(  )
A.(-∞,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2},2$]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设α,β是两个不同的平面,m,n,l 是三条不同的直线,下列命题中正确的是(  )
A.若α∩β=l,m?α,n?β,则m,n一定相交B.若α∥β,m?α,n?β,则m,n一定平行
C.若α∥β,m∥α,n∥β,则m,n一定平行D.若α⊥β,m⊥α,n⊥β,则m,n一定垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.2$\sqrt{2}+\frac{2π}{3}$B.4$+\frac{2π}{3}$C.2$\sqrt{2}+\frac{π}{3}$D.4$+\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为150°,|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=4,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案