精英家教网 > 高中数学 > 题目详情
19.从集合{2,3,4,5}中随机抽取一个数a,从集合{4,6,8}中随机抽取一个数b,则向量$\overrightarrow{m}$=(a,b)与向量$\overrightarrow{n}$=(-2,1)垂直的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 求得所有的(a,b)共有12个,满足$\overrightarrow{m}$⊥$\overrightarrow{n}$的(a,b)共有3个,由此求得向量$\overrightarrow{m}$=(a,b)与向量$\overrightarrow{n}$=(-2,1)垂直的概率.

解答 解:所有的(a,b)共有4×3=12个,
由向量 $\overrightarrow{m}$=(a,b)与向量$\overrightarrow{n}$=(-2,1)垂直,可得$\overrightarrow{m}$•$\overrightarrow{n}$=-2a+b=0,
故满足$\overrightarrow{m}$⊥$\overrightarrow{n}$的(a,b)共有3个:(2,4)、(3,6),(4,8),
故向量$\overrightarrow{m}$=(a,b)与向量$\overrightarrow{n}$=(-2,1)垂直的概率为$\frac{3}{12}$=$\frac{1}{4}$,
故选:B.

点评 本题主要考查两个向量垂直的性质,古典概率及其计算公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知直四棱柱底面是边长为2的菱形,侧面对角线的长为$2\sqrt{3}$,则该直四棱柱的侧面积为16$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合P={x|x2-2x-8>0},Q={x|x≥a},P∪Q=R,则a的取值范围是(  )
A.(-2,+∞)B.(4,+∞)C.(-∞,-2]D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)与两条平行直线l1:y=x+b与l2:y=x-b分别相交于四点A,B,D,C,且四边形ABCD的面积为$\frac{{8{b^2}}}{3}$,则椭圆E的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a为实数,i是虚数单位,且$\frac{a+2i}{2+i}=i$,则a=(  )
A.1B.2C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正四棱锥P-ABCD中,PA=AB=2,则该四棱锥外接球的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知e为自然对数的底,a=($\frac{2}{e}$)-0.3,b=($\frac{e}{2}$)0.4,c=log${\;}_{\frac{2}{e}}$e,则a,b,c的大小关系是(  )
A.c<b<aB.c<a<bC.b<a<cD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.现有编号为①、②、③的三个三棱锥(底面水平放置),俯视图分别为图1、图2、图3,则至少存在一个侧面与此底面互相垂直的三棱锥的所有编号是(  )
A.B.①②C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B有三个元素,则实数m的取值范围是(  )
A.[3,6)B.[1,2)C.[2,4)D.(2,4]

查看答案和解析>>

同步练习册答案