精英家教网 > 高中数学 > 题目详情
10.下列四个数中,数值最小的是(  )
A.25(10)B.54(4)C.10111(2)D.26(8)

分析 将四个答案中的数均转化为十进制的数,比较可得答案.

解答 解:∵对于B,54(4)=20+4=24(10)
对于C,10111(2)=1+2+4+16=23(10)
对于D,26(8)=16+6=22(10)
故四个数中26(8)最小,
故选:D

点评 本题考查其它进制与十进制之间的转化,熟练掌握其它进制与十进制之间的转化法则,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=1,Sn=2n-an(n∈N*).
(1)计算a2,a3,a4,并由此猜想通项公式an
(2)用数学归纳法证明(1)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某种产品的广告费用支出x(千元)与销售额y(10万元)之间有如下的对应数据:
x24568
y34657
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出销售额y关于费用支出x的线性回归方程$\stackrel{∧}{y}$=bx+a
不得禽流感得禽流感总计
服药
不服药
总计

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.以下关于导数和极值点的说法中正确的是(  )
A.可导函数f(x)为增函数的充要条件是f'(x)>0.
B.若f(x)可导,则f'(x0)=0是x0为f(x)的极值点的充要条件.
C.f(x)在R上可导,若?x1,x2∈R,且x1≠x2,$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>2017$,则?x∈R,f'(x)>2017.
D.若奇函数f(x)可导,则其导函数f'(x)为偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.学校餐厅每天供应500名学生用餐,每星期一有A、B两种菜可供选择.调查表明,凡是在这星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有30%改选A菜.用an,bn分别表示在第n个星期选A的人数和选B的人数,若a1=300,则a20=(  )
A.260B.280C.300D.320

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.同时掷3枚硬币,那么互为对立事件的是(  )
A.最少有1枚正面和最多有1枚正面B.最少有2枚正面和恰有1枚正面
C.最多有1枚正面和最少有2枚正面D.最多有1枚正面和恰有2枚正面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在一段时间内,某种商品的价格x(元)和某大型公司的需求量y(千件)之间的一组数据如表:
价格x8.28.610.011.311.9
需求量y6.27.58.08.59.8
根据上表可得回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=0.76,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$.据此估计,某种商品的价格为15元时,求其需求量约为多少千件?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知复数z满足|3+4i|+z=1+3i.
(Ⅰ)求$\overline{z}$;
(Ⅱ)求$\frac{(1+i)^{2}(3+4i)}{z}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在各项都为正数的等比数列{an}中,已知a1=2,$a_{n+2}^2+4a_n^2=4a_{n+1}^2$,则数列{an}的通项公式an=${2}^{\frac{n+1}{2}}$.

查看答案和解析>>

同步练习册答案