精英家教网 > 高中数学 > 题目详情
20.已知数列{an}满足a1=1,Sn=2n-an(n∈N*).
(1)计算a2,a3,a4,并由此猜想通项公式an
(2)用数学归纳法证明(1)中的猜想.

分析 (1)根据Sn=2n-an,利用递推公式,求出a2,a3,a4
(2)总结出规律求出an,然后利用归纳法进行证明,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.

解答 解:(1)当n=1时,a1=S1=1.
当n=2时,a1+a2=S2=2×2-a2,∴a2=$\frac{3}{2}$.
当n=3时,a1+a2+a3=S3=2×3-a3,∴a3=$\frac{7}{4}$.
当n=4时,a1+a2+a3+a4=S4=2×4-a4,∴a4=$\frac{15}{8}$,
由此猜想an=$\frac{{2}^{n}-1}{{2}^{n-1}}$(n∈N*).                          
(2)证明:①当n=1时,a1=S1=1,结论成立.
②假设n=k(k≥1且k∈N*)时,结论成立,即ak=$\frac{{2}^{k}-1}{{2}^{k-1}}$
那么n=k+1(k≥1且k∈N*)时,ak+1=Sk+1-Sk=2(k+1)-ak+1-2k+ak=2+ak-ak+1
∴2ak+1=2+ak=2+$\frac{{2}^{k}-1}{{2}^{k-1}}$=$\frac{{2}^{k+1}-1}{{2}^{k-1}}$.
∴ak+1=$\frac{{2}^{k-1}-1}{{2}^{k}}$,
由①②可知,对n∈N*,an=$\frac{{2}^{n}-1}{{2}^{n-1}}$都成立

点评 此题主要考查归纳法的证明,归纳法一般三个步骤:(1)验证n=1成立;(2)假设n=k成立;(3)利用已知条件证明n=k+1也成立,从而求证,这是数列的通项一种常用求解的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,已知|BC|=4,且$\frac{{|{AB}|}}{{|{AC}|}}=λ$,求点A的轨迹方程,并说明轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}中,a5+a7=$\int_0^2{|{1-{x^2}}|}$dx,则a4+a6+a8=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{2sin50°+sin80°(1+tan60°tan10°)}{\sqrt{1+sin100°}}$=(  )
A.2B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设U=A∪B={x∈N*|lgx<1|}若A∩(∁UB)={m|m=2n+1,n=0,1,2,3,4},则集合B={2,4,6,8}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)解不等式|2x+1|+|x-2|≥5
(2)已知x∈R,a=x2-1,b=2x+2.求证a,b中至少有一个是非负数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A、B两地的距离是120km,按交通法规规定,A、B两地之间的公路车速应限制在50~100km/h.假设汽油的价格是6元/升,汽车的油耗率为$(3+\frac{x^2}{360})L/h$,司机每小时的工资是42元,设车速x(单位:km/h),如果不考虑其他费用,行车的总费用为y(单位:元).
(1)将y表示为x的函数;
(2)最经济的车速是多少?并求出这次行车的最小费用?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在锐角三角形ABC中,a,b,c分别是角A,B,C的对边,已知a,b是方程x2-2$\sqrt{3}$x+2=0的两个根,且2sin(A+B)-$\sqrt{3}$=0,则c=(  )
A.4B.$\sqrt{6}$C.2$\sqrt{3}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四个数中,数值最小的是(  )
A.25(10)B.54(4)C.10111(2)D.26(8)

查看答案和解析>>

同步练习册答案