精英家教网 > 高中数学 > 题目详情
1.如图,在四棱锥E-ABCD中,△ABD是正三角形,△BCD是等腰三角形,∠BCD=120°,EC⊥BD.
(Ⅰ)求证:BE=DE;
(Ⅱ)若AB=2$\sqrt{3}$,AE=3$\sqrt{2}$,平面EBD⊥平面ABCD,直线AE与平面ABD所成的角为45°,求二面角B-AE-D的余弦值.

分析 (Ⅰ)取BD中点O,连结CO,EO,推导出CO⊥BD,EO⊥BD,由此能证明BE=DE.
(Ⅱ)以O为原点,OA为x轴,OB为y轴,OE为z轴,建立空间直角坐标系,利用向量法能求出二面角B-AE-D的余弦值.

解答 证明:(Ⅰ)取BD中点O,连结CO,EO,
∵△BCD是等腰三角形,∠BCD=120°,∴CB=CD,∴CO⊥BD,
又∵EC⊥BD,EC∩CO=C,∴BD⊥平面EOC,∴EO⊥BD,
在△BDE中,∵O为BD的中点,∴BE=DE.
(Ⅱ)∵平面EBD⊥平面ABCD,平面EBD∩平面ABCD=BD,
EO⊥BD,
∴EO⊥平面ABCD,又∵CO⊥BD,AO⊥BD,
∴A,O,C三点共线,AC⊥BD,
以O为原点,OA为x轴,OB为y轴,OE为z轴,建立空间直角坐标系,
在正△ABCD中,AB=2$\sqrt{3}$,∴AO=3,BO=DO=$\sqrt{3}$,
∵直线AE与平面ABD所成角为45°,∴EO=AO=3,
A(3,0,0),B(0,$\sqrt{3}$,0),D(0,-$\sqrt{3}$,0),E(0,0,3),
$\overrightarrow{AB}$=(-3,$\sqrt{3}$,0),$\overrightarrow{AD}$=(-3,-$\sqrt{3}$,0),$\overrightarrow{AE}$=(-3,0,3),
设平面ABE的法向量$\overrightarrow{n}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=-3a+\sqrt{3}b=0}\\{\overrightarrow{n}•\overrightarrow{AE}=-3a+3c=0}\end{array}\right.$,取a=1,得$\overrightarrow{n}$=(1,$\sqrt{3}$,1),
设平面ADE的法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AD}=-3x-\sqrt{3}y=0}\\{\overrightarrow{m}•\overrightarrow{AE}=-3x+3z=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,-$\sqrt{3}$,1),
设二面角B-AE-D为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{5}•\sqrt{5}}$=$\frac{1}{5}$.
∴二面角B-AE-D的余弦值为$\frac{1}{5}$.

点评 本题考查两线段相等的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知f(x)=log2(1+x)-log2(1-x)
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并加以说明;
(3)求使f(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示的程序框图中,输出的B是(  )
A.$\sqrt{3}$B.0C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.从集合M={(x,y)|(|x|-1)2+(|y|-1)2<4,x,y∈Z}中随机取一个点P(x,y),若xy≥k(k>0)的斜率为$\frac{6}{25}$,则k的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=alnx+x2-ax(a∈R).
(1)若x=3是f(x)的极值点,求f(x)的单调区间;
(2)求g(x)=f(x)-2x在区间[1,e]的最小值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从装有2个红球和2个黑球的口袋内任取2个球,则与事件恰有两个红球既不对立也不互斥的事件是(  )
A.至少有一个黑球B.恰好一个黑球C.至多有一个红球D.至少有一个红球

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在斜三梭柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1
(1)求证:E是AB中点;
(2)若AC1⊥A1B,求证:AC1⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)求sinAcosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合M={x|x2≥x},N={x|log${\;}_{\frac{1}{2}}$(x+1)>0},则有(  )
A.N⊆MB.M⊆∁RNC.M∩N=∅D.M∪N=R

查看答案和解析>>

同步练习册答案