| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
分析 由于过直角顶点C在∠ACB内部任作一射线CM,故可以认为所有可能结果的区域为∠ACB,可将事件A构成的区域为∠ACC',以角度为“测度”来计算
解答 解:在AB上取AC'=AC,则∠ACC′=75°.
记A={在∠ACB内部任作一射线CM,与线段AB交于点M,AM<AC},
则所有可能结果的区域为∠ACB,
事件A构成的区域为∠ACC'.
又∠ACB=90°,∠ACC'=75°.![]()
又满足BC<AM的事件为B,则事件B是∠ACC'=60°的区域,所以满足BC<AM<AC的角度区域为事件A,B的同时发生,即∠MCC'=45°,
由几何概型公式得到BC<AM<AC的概率为:$\frac{45°}{90°}=\frac{1}{2}$;
故选:C.
点评 本题考查几何概型.在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 周期函数,最小正周期为$\frac{2π}{3}$ | B. | 周期函数,最小正周期为$\frac{π}{3}$ | ||
| C. | 周期函数,最小正周期为2π | D. | 非周期函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
| A. | 有99%以上的把握认为“喜欢乡村音乐与性别有关” | |
| B. | 有99%以上的把握认为“喜欢乡村音乐与性别无关” | |
| C. | 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别有关” | |
| D. | 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别无关” |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com