14£®ÎªÁËÑо¿¸ßÖÐѧÉú¶ÔÏç´åÒôÀÖµÄ̬¶È£¨Ï²»¶ºÍ²»Ï²»¶Á½ÖÖ̬¶È£©ÓëÐÔ±ðµÄ¹ØÏµ£¬ÔËÓÃ2¡Á2ÁÐÁª±í½øÐжÀÁ¢ÐÔ¼ìÑ飬¾­¼ÆËãk2=8.01£¬¸½±íÈçÏ£º
P£¨K2¡Ýk0£©0.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
²ÎÕÕ¸½±í£¬µÃµ½µÄÕýÈ·µÄ½áÂÛÊÇ£¨¡¡¡¡£©
A£®ÓÐ99%ÒÔÉϵİÑÎÕÈÏΪ¡°Ï²»¶Ïç´åÒôÀÖÓëÐÔ±ðÓйء±
B£®ÓÐ99%ÒÔÉϵİÑÎÕÈÏΪ¡°Ï²»¶Ïç´åÒôÀÖÓëÐÔ±ðÎ޹ء±
C£®ÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.1%µÄǰÌáÏ£¬ÈÏΪ¡°Ï²»¶Ïç´åÒôÀÖÓëÐÔ±ðÓйء±
D£®ÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.1%µÄǰÌáÏ£¬ÈÏΪ¡°Ï²»¶Ïç´åÒôÀÖÓëÐÔ±ðÎ޹ء±

·ÖÎö ÓÉÌâÄ¿Ëù¸øÊý¾Ý£¬½áºÏ¶ÀÁ¢¼ìÑéµÄ¹æÂÉ¿É×÷³öÅжϣ®

½â´ð ½â£º¡ßk2=8.01£¾6.635£¬
¡àÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.1µÄǰÌáÏÂÈÏΪ¡°Ï²»¶Ïç´åÒôÀÖÓëÐÔ±ðÓйء±£¬
¼´ÓÐ99%ÒÔÉϵİÑÎÕÈÏΪ¡°Ï²»¶Ïç´åÒôÀÖÓëÐÔ±ðÓйء±£®
¹ÊÑ¡£ºA

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢¼ìÑ飬Êô»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÔÚÖ±½ÇÈý½ÇÐÎABCÖУ¬Ö±½Ç¶¥µãΪC£¬ÆäÖСÏB=60¡ã£¬ÔÚ½ÇACBÄÚ²¿ÈÎ×÷Ò»ÌõÉäÏßCM£¬ÓëÏß¶ÎAB½»ÓÚµãM£¬Âú×ãAM£¼ACµÄ¸ÅÂÊΪ$\frac{5}{6}$£¬ÔòÂú×ãBC£¼AM£¼ACµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{3}$C£®$\frac{1}{2}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®É躯Êýf£¨x£©=|x2-2x|£®
£¨1£©ÏÈÍê³É±í¸ñ£¬ÔÙÔÚ×ø±êÖáÉÏ»­³öº¯Êýf£¨x£©ÔÚÇø¼ä[-2£¬3]ÉϵÄͼÏó£»
£¨2£©Çóº¯Êýg£¨x£©=f£¨x£©+2ÔÚÇø¼ä[-2£¬3]ÉϵÄÖµÓò£®
x-2-10123
f£¨x£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬¹ØÓÚÊýÁÐ{an}£¬ÏÂÁÐÃüÌâÕýÈ·µÄÐòºÅÊÇ¢Ù¢Ú£®
¢ÙÈôÊýÁÐ{an}¼ÈÊǵȲîÊýÁÐÓÖÊǵȱÈÊýÁУ¬Ôòan=an+1£»
¢ÚÈô${S_n}=a{n^2}+bn£¨{a£¬b¡ÊR}£©$£¬ÔòÊýÁÐ{an}ÊǵȲîÊýÁУ»
¢ÛÈô${S_n}=1+{£¨{-1}£©^n}$£¬ÔòÊýÁÐ{an}ÊǵȱÈÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=3£¬an+1•an-2•an+1=0 £¨n¡ÊN*£©£®
£¨1£©Çó$\frac{1}{{a}_{2}-1}$£¬$\frac{1}{{a}_{3}-1}$£¬$\frac{1}{{a}_{4}-1}$µÄÖµ£»
£¨2£©Çó{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚÊýÁÐ{an}ÖУ¬a1=1£¬an=1-$\frac{1}{{a}_{n-1}+1}$£¨n¡Ý2£©£¬Ôòa3=$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªSÊÇ¡÷ABCËùÔÚÆ½ÃæÍâÒ»µã£¬DÊÇSCµÄÖе㣬Èô$\overrightarrow{BD}$=x$\overrightarrow{SA}+y\overrightarrow{SB}+z\overrightarrow{SC}$£¬Ôòx+y+z=$-\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¼¯ºÏM={x|-1¡Üx¡Ü1}£¬N={x|$\frac{x}{x-1}$¡Ü0}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
A£®{x|0¡Üx£¼1}B£®{x|0£¼x¡Ü1}C£®{x|-1¡Üx¡Ü1}D£®{x|-1¡Üx£¼1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®£¨1£©ÔÚ¸´Æ½ÃæÄÚ¸´Êýz1=1+2i£¬z2=$\sqrt{2}$+$\sqrt{3}$i£¬z3=$\sqrt{3}$-$\sqrt{2}$i£¬z4=-2+i¶ÔÓ¦µÄËĵãÊÇ·ñÔÚͬһ¸öÔ²ÉÏ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨2£©ÊµÊýmȡʲôֵʱ£¬¸´Æ½ÃæÄÚ±íʾ¸´Êýz=£¨m2-8m+15£©+£¨m2-5m-14£©iµÄµãλÓÚµÚËÄÏóÏÞ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸