分析 (1)证明DC⊥BC,AB⊥CD,推出AB⊥AC,然后证明AB⊥平面ADC,得到AB⊥AD.
(2)取AD的中点F,连接EF,则EF∥BA,证明EF⊥平面ADC,连接FC,说明∠ECF=30°,求出以四面体ABCD的外接球的半径然后求解即可.
解答 解:(1)证明:由平面ABC⊥平面BCD,DC⊥BC,得DC⊥平面ABC,∴AB⊥CD…(2分)
又由$AB=\sqrt{3}$,BC=2,AC=1,得BC2=AB2+AC2,所以AB⊥AC…(4分)
故AB⊥平面ADC,所以AB⊥AD…(6分)
(2)取AD的中点F,连接EF,则EF∥BA,![]()
因为AB⊥平面ADC∴EF⊥平面ADC…(8分)
连接FC,则∠ECF=30°,∴$CE=2EF=AB=\sqrt{3}$…(9分)
又∠BAD=∠BCD=90°,
所以四面体ABCD的外接球的半径$R=CE=\sqrt{3}$…(11分)
故四面体ABCD的外接球的表面积=$4π{(\sqrt{3})^2}=12π$…(12分)
(向量解法酌情给分)
点评 本题考查直线与平面垂直的判定定理的应用,几何体的外接球的表面积的求法,直线与平面所成角的应用,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2π | B. | 4π | C. | 8π | D. | 16π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com