精英家教网 > 高中数学 > 题目详情
3.已知点M是抛物线C:y2=2px(p>0)上一点,F为C的焦点,MF的中点坐标是(2,2),则p的值为(  )
A.1B.2C.3D.4

分析 求得F($\frac{p}{2}$,0),M($\frac{{y}_{1}^{2}}{2p}$,y1),利用中点坐标公式,列方程,即可求得p的值.

解答 解:抛物线C:y2=2px的焦点F($\frac{p}{2}$,0),设M($\frac{{y}_{1}^{2}}{2p}$,y1),
由中点坐标公式可知:$\frac{p}{2}$+$\frac{{y}_{1}^{2}}{2p}$=2×2,y1=2×2,
解得:p=4,
p的值为4,
故选D.

点评 本题考查抛物线的方程,中点坐标公式,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知向量$\vec a$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$与向量$\overrightarrow{a}$+2$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设F1是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦点,M是C上一点,且MF1与x轴垂直,若$|{M{F_1}}|=\frac{3}{2}$,椭圆的离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)以椭圆C的左顶点A为Rt△ABD的直角顶点,边AB,AD与椭圆C交于B,D两点,求△ABD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为吸引顾客,某公司在商场举办电子游戏活动.对于A,B两种游戏,每种游戏玩一次均会出现两种结果,而且每次游戏的结果相互独立,具体规则如下:玩一次游戏A,若绿灯闪亮,获得50分,若绿灯不闪亮,则扣除10分,绿灯闪亮的概率为$\frac{1}{2}$;玩一次游戏B,若出现音乐,获得60分,若没有出现音乐,则扣除20分(即获得-20分),出现音乐的概率为$\frac{2}{5}$.玩多次游戏后累计积分达到130分可以兑换奖品.
(1)记X为玩游戏A和B各一次所得的总分,求随机变量X的分布列和数学期望;
(2)记某人玩5次游戏B,求该人能兑换奖品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四面体ABCD中,平面ABC⊥平面BCD,DC⊥BC,$AB=\sqrt{3}$,BC=2,AC=1.
(1)求证:AB⊥AD;
(2)设E是BD的中点,若直线CE与平面ACD的夹角为30°,求四面体ABCD外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}{x^2}$+ax+2lnx,g(x)=$\frac{1}{2}{x^2}$+kx+(2-x)lnx-k,k∈Z.
(1)当a=-3时,求f(x)的单调区间;
(2)当a=1时,若对任意x>1,都有g(x)<f(x)成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的离心率为$\frac{5}{3}$,则其渐近线方程为(  )
A.2x±y=0B.x±2y=0C.3x±4y=0D.4x±3y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=ax-\frac{b}{x}-2lnx$,对任意实数x>0,都有$f(x)=-f(\frac{1}{x})$成立.
(Ⅰ)对任意实数x≥1,函数f(x)≥0恒成立,求实数a的取值范围;
(Ⅱ)求证:$\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{n^2}>2ln\frac{2n}{n+1}-\frac{3}{4}$,n≥2,n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.从椭圆$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)上的动点M作圆${x^2}+{y^2}=\frac{b^2}{2}$的两条切线,切点为P和Q,直线PQ与x轴和y轴的交点分别为E和F,则△EOF面积的最小值是$\frac{b^3}{4a}$.

查看答案和解析>>

同步练习册答案