精英家教网 > 高中数学 > 题目详情
15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的离心率为$\frac{5}{3}$,则其渐近线方程为(  )
A.2x±y=0B.x±2y=0C.3x±4y=0D.4x±3y=0

分析 运用双曲线的离心率公式和a,b,c的关系,可得a,b的关系式,再由双曲线的渐近线方程即可得到所求.

解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的离心率为$\frac{5}{3}$,
可得e=$\frac{c}{a}$=$\frac{5}{3}$,即c=$\frac{5}{3}$a,
可得b=$\sqrt{{c}^{2}-{a}^{2}}$=$\frac{4}{3}$a,
由双曲线的渐近线方程可得y=±$\frac{b}{a}$x,
即为4x±3y=0.
故选:D.

点评 本题考查双曲线的方程和性质,主要是离心率和渐近线方程的求法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设i为虚数单位,若$z=\frac{a-i}{1+i}(a∈{R})$是纯虚数,则a的值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$,联接椭圆四个顶点的四边形面积为2$\sqrt{6}$.
(1)求椭圆C的方程;
(2)A、B是椭圆的左右顶点,P(xP,yP)是椭圆上任意一点,椭圆在P点处的切线与过A、B且与x轴垂直的直线分别交于C、D两点,直线AD、BC交于Q(xQ,yQ),是否存在实数λ,使xP=λxQ恒成立,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点M是抛物线C:y2=2px(p>0)上一点,F为C的焦点,MF的中点坐标是(2,2),则p的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设复数z满足$\frac{{{{({1+i})}^2}}}{z}=1-i$,则z=(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知随机变量ξ的概率分布列为:
ξ012
P$\frac{1}{4}$$\frac{1}{2}$$\frac{1}{4}$
则Eξ=1,Dξ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.点A,B,C,D在同一个球的球面上,AB=BC=$\sqrt{6}$,∠ABC=90°,若四面体ABCD体积的最大值为3,则这个球的表面积为(  )
A.B.C.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x∈N|2x<6},集合B={x∈R|x2-4x+3<0},则A∩(∁RB)=(  )
A.{0}B.{2}C.{0,2}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{m}$=($\sqrt{3}$,x),$\overrightarrow{n}$=(1,$\sqrt{3}$),且向量$\overrightarrow{m}$、$\overrightarrow{n}$的夹角为$\frac{π}{6}$,则x=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

同步练习册答案