精英家教网 > 高中数学 > 题目详情
5.设i为虚数单位,若$z=\frac{a-i}{1+i}(a∈{R})$是纯虚数,则a的值是(  )
A.-1B.0C.1D.2

分析 直接由复数代数形式的乘除运算化简复数z,再根据已知条件计算得答案.

解答 解:$z=\frac{a-i}{1+i}=\frac{(a-i)(1-i)}{(1+i)(1-i)}=\frac{a-1}{2}-\frac{a+1}{2}i$,
∵z是纯虚数,∴$\left\{\begin{array}{l}a-1=0\\ a+1≠0\end{array}\right.$,解得a=1.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=2sin(ωx+φ),x∈[-$\frac{π}{12}$,$\frac{2π}{3}$]的图象如图所示,若f(x1)=f(x2),且x1≠x2,则f(x1+x2)的值为(  )
A.0B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$,sin(α+β)=-$\frac{4}{5}$,则sinβ=$-\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\vec a$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$与向量$\overrightarrow{a}$+2$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在圆柱中,A,B,C,D是底面圆的四等分点,O是圆心,A1A,B1B,C1C与底面ABCD垂直,底面圆的直径等于圆柱的高.
(Ⅰ)证明:BC⊥AB1
(Ⅱ)(ⅰ)求二面角A1-BB1-D的大小;
(ⅱ)求异面直线AB1和BD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数$z=\frac{i}{1+i}-\frac{1}{2i}$(其中i是虚数单位)的虚部为(  )
A.$\frac{1}{2}$B.iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=2sin2(x+$\frac{3π}{2}$)-1是(  )
A.最小正周期为π的偶函数B.最小正周期为π的奇函数
C.最小正周期为$\frac{π}{2}$的偶函数D.最小正周期为$\frac{π}{2}$的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设F1是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦点,M是C上一点,且MF1与x轴垂直,若$|{M{F_1}}|=\frac{3}{2}$,椭圆的离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)以椭圆C的左顶点A为Rt△ABD的直角顶点,边AB,AD与椭圆C交于B,D两点,求△ABD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的离心率为$\frac{5}{3}$,则其渐近线方程为(  )
A.2x±y=0B.x±2y=0C.3x±4y=0D.4x±3y=0

查看答案和解析>>

同步练习册答案