13£®ÒÑÖªÏòÁ¿$\vec a$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪ$\frac{¦Ð}{3}$£¬ÇÒ|$\overrightarrow{a}$|=2£¬|$\overrightarrow{b}$|=1£¬ÔòÏòÁ¿$\overrightarrow{a}$ÓëÏòÁ¿$\overrightarrow{a}$+2$\overrightarrow{b}$µÄ¼Ð½ÇΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{3}$C£®$\frac{¦Ð}{4}$D£®$\frac{¦Ð}{2}$

·ÖÎö ÀûÓÃÊýÁ¿»ýÔËËãÐÔÖÊ¡¢ÏòÁ¿¼Ð½Ç¹«Ê½¼´¿ÉµÃ³ö£®

½â´ð ½â£º$\overrightarrow{a}•\overrightarrow{b}$=$2¡Á1¡Ácos\frac{¦Ð}{3}$=1£®
$\overrightarrow{a}$•£¨$\overrightarrow{a}$+2$\overrightarrow{b}$£©=${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}•\overrightarrow{b}$=4+2=6£®
$|\overrightarrow{a}+2\overrightarrow{b}|$=$\sqrt{{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+4{\overrightarrow{b}}^{2}}$=$\sqrt{{2}^{2}+4¡Á1+4¡Á1}$=2$\sqrt{3}$£®
ÉèÏòÁ¿$\overrightarrow{a}$ÓëÏòÁ¿$\overrightarrow{a}$+2$\overrightarrow{b}$µÄ¼Ð½ÇΪ¦È£®
¡àcos¦È=$\frac{\overrightarrow{a}•£¨\overrightarrow{a}+2\overrightarrow{b}£©}{|\overrightarrow{a}|•|\overrightarrow{a}+2\overrightarrow{b}|}$=$\frac{6}{2¡Á2\sqrt{3}}$=$\frac{\sqrt{3}}{2}$£®
¡ß$\overrightarrow{a}$Óë$\overrightarrow{a}$+2$\overrightarrow{b}$¼Ð½Ç¦ÈµÄȡֵ·¶Î§Îª[0£¬¦Ð]£¬
¡à$¦È=\frac{¦Ð}{6}$£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÁËÊýÁ¿»ýÔËËãÐÔÖÊ¡¢ÏòÁ¿¼Ð½Ç¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÔ²F1£º£¨x+1£©2+y2=t2£¬Ô²F2£º£¨x-1£©2+y2=£¨2$\sqrt{2}$-t£©2£¬0£¼t£¼2$\sqrt{2}$£¬µ±Á½¸öÔ²Óй«¹²µãʱ£¬ËùÓпÉÄܵĹ«¹²µã×é³ÉµÄÇúÏß¼ÇΪC£®
£¨1£©Çó³öÇúÏßCµÄ·½³Ì£»
£¨2£©ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1£¬$\sqrt{3}$£©£¬M¡¢N¡¢PΪÇúÏßCÉϲ»Í¬Èýµã£¬$\overrightarrow{{F}_{2}M}$=¦Ë$\overrightarrow{{F}_{2}N}$=¦Ì$\overrightarrow{a}$£¬Çó¡÷PMNÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Éè±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-y-1¡Ü0}\\{x+y¡Ý0}\\{x+2y-4¡Ý0}\end{array}\right.$£¬Ôòz=x-2yµÄ×î´óֵΪ$-\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªf£¨x£©=ax-$\frac{1}{x}$£¬g£¨x£©=lnx£¬x£¾0£¬a¡ÊRÊdz£Êý
£¨¢ñ£©ÇóÇúÏßy=g£¨x£©ÔÚµãP£¨1£¬g£¨1£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©ÉèF£¨x£©=f£¨x£©-g£¨x£©£¬ÌÖÂÛº¯ÊýF£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÊýÁÐ{an}¶ÔÓÚÈ·¶¨µÄÕýÕûÊým£¬Èô´æÔÚÕýÕûÊýnʹµÃam+n=am+an³ÉÁ¢£¬Ôò³ÆÊýÁÐ{an}Ϊ¡°m½×¿É·Ö²ðÊýÁС±£®
£¨1£©Éè{an}ÊÇÊ×ÏîΪ2£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬Ö¤Ã÷{an}Ϊ¡°3½×¿É·Ö²ðÊýÁС±£»
£¨2£©ÉèÊýÁÐ{an}µÄǰnÏîºÍΪ${S_n}={2^n}-a$£¨a£¾0£©£¬ÈôÊýÁÐ{an}Ϊ¡°1½×¿É·Ö²ðÊýÁС±£¬ÇóʵÊýaµÄÖµ£»
£¨3£©Éè${a_n}={2^n}+{n^2}+12$£¬ÊÔ̽ÇóÊÇ·ñ´æÔÚmʹµÃÈôÊýÁÐ{an}Ϊ¡°m½×¿É·Ö²ðÊýÁС±£®Èô´æÔÚ£¬ÇëÇó³öËùÓÐm£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÔÚÈçͼËùʾµÄÖ±½Ç×ø±êϵxOyÖУ¬AC¡ÍOB£¬OA¡ÍAB£¬|OB|=3£¬µãCÊÇOBÉÏ¿¿½üOµãµÄÈýµÈ·Öµã£¬Èô$y=\frac{k}{x}£¨x£¾0£©$º¯ÊýµÄͼÏó£¨Í¼ÖÐδ»­³ö£©Óë¡÷OABµÄ±ß½çÖÁÉÙÓÐ2¸ö½»µã£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ$0¡Ük£¼\frac{{9\sqrt{2}}}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÉèiΪÐéÊýµ¥Î»£¬Èô$z=\frac{a-i}{1+i}£¨a¡Ê{R}£©$ÊÇ´¿ÐéÊý£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©
A£®-1B£®0C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÈôÏòÁ¿$\overrightarrow{m}$=£¨2£¬1£©£¬$\overrightarrow{n}$=£¨-3£¬2¦Ë£©£¬ÇÒ£¨2$\overrightarrow{m}$-$\overrightarrow{n}$£©¡Î£¨$\overrightarrow{m}$+3$\overrightarrow{n}$£©£¬ÔòʵÊý¦Ë=-$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªµãMÊÇÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©ÉÏÒ»µã£¬FΪCµÄ½¹µã£¬MFµÄÖеã×ø±êÊÇ£¨2£¬2£©£¬ÔòpµÄֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸