分析 a1=2,对任意正整数m,n,都有Sm+n=SmSn,取m=1,可得Sn+1=2Sn,利用等比数列的通项公式可得Sn,再利用递推关系即可得出.
解答 解:a1=2,对任意正整数m,n,都有Sm+n=SmSn,
取m=1,则:Sn+1=2Sn,
∴数列{Sn}是等比数列,首项为2,公比为2,
∴Sn=2n.
n≥2时,an=Sn-Sn-1=2n-2n-1=2n-1.
则{an}的通项公式为an=$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.
点评 本题考查了递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 1+i | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在[${\frac{π}{6}$,$\frac{π}{3}}$]上单调递减 | B. | 在[${\frac{π}{6}$,$\frac{π}{3}}$]上单调递增 | ||
| C. | 在[-$\frac{π}{6}$,$\frac{π}{4}}$]上单调递减 | D. | 在[-$\frac{π}{6}$,$\frac{π}{4}}$]上单调递增 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,-6) | B. | (0,7) | C. | (0,-6)或(0,7) | D. | (-6,0)或(7,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com