精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=2cos(ωx+θ)(0<θ<π,ω>0)为奇函数,其图象与直线y=2相邻两交点的距离为π,则函数f(x)(  )
A.在[${\frac{π}{6}$,$\frac{π}{3}}$]上单调递减B.在[${\frac{π}{6}$,$\frac{π}{3}}$]上单调递增
C.在[-$\frac{π}{6}$,$\frac{π}{4}}$]上单调递减D.在[-$\frac{π}{6}$,$\frac{π}{4}}$]上单调递增

分析 由条件利用正弦函数的奇偶性、周期性求得θ和ω的值,可得函数的解析式,再利用正弦函数的单调性,得出结论.

解答 解:∵函数f(x)=2cos(ωx+θ)=2sin[$\frac{π}{2}$-(ωx+θ)]=-2sin(ωx+θ-$\frac{π}{2}$)(0<θ<π,ω>0)为奇函数,
∴θ-$\frac{π}{2}$=kπ,即 θ=kπ+$\frac{π}{2}$,k∈Z,∴θ=$\frac{π}{2}$,f(x)=-2sinωx.
再根据它的图象与直线y=2相邻两交点的距离为π,则函数f(x)的周期为 $\frac{2π}{ω}$=π,∴ω=2,
∴f(x)=-2sin2x.
x∈[${\frac{π}{6}$,$\frac{π}{3}}$]⇒2x∈[$\frac{π}{3}$,$\frac{2π}{3}$],函数f(x)没有单调性,故排除A、B.
在[-$\frac{π}{6}$,$\frac{π}{4}}$]上,2x∈[-$\frac{π}{3}$,$\frac{π}{2}$],函数f(x)单调递减,故排除D,
故选:C.

点评 本题主要考查正弦函数的奇偶性、周期性、单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知变量x,y满足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,则2x+y的最大值为(  )
A.$\frac{1}{3}$B.10C.3D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在复平面内,点A(-2,1)对应的复数z,则|z+1|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“a<1”是“函数f(x)=|x-a|+|x-1|在区间[1,+∞)上为增函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆C:(x-2)2+(y-3)2=1,(0,3)且斜率为k的直线l与圆C有两个不同的交点M,N,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=$\frac{84}{5}$,则实数k的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a=log23,b=(log23)2,c=(${\frac{1}{4}}$)-1.2,则(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的前n项和为Sn,a1=2,对任意正整数m,n,都有Sm+n=SmSn,则{an}的通项公式为an=$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式(x2+1)|-x-2|>0的解集是{x|x≠-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等比数列{an}的首项a1=25,公比为5.
(1)求数列{an}的通项公式;
(2)记bn=log5(5an),n=1,2,…,证明:{bn}是等差数列,并求b1+b2+…+b100的值.

查看答案和解析>>

同步练习册答案