精英家教网 > 高中数学 > 题目详情
17.已知x,y的一组数据如下表
x23456
y34689
则由表中的数据算得的线性回归方程可能是(  )
A.y=2x+2B.y=2x-1C.y=-$\frac{3}{2}$x+12D.y=$\frac{8}{5}$x-$\frac{2}{5}$

分析 求出$\overline{x}$=$\frac{1}{5}$(2+3+4+5+6)=4,$\overline{y}$=$\frac{1}{5}$(3+4+6+8+9)=6,代入线性回归方程,可得D满足,即可得出结论.

解答 解:由题意,$\overline{x}$=$\frac{1}{5}$(2+3+4+5+6)=4,$\overline{y}$=$\frac{1}{5}$(3+4+6+8+9)=6,
代入线性回归方程,可得D满足,
故选:D.

点评 解决线性回归直线的方程,应该利用最小二乘法推得的公式求出直线的截距和斜率,注意由公式判断出回归直线一定过样本中心点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.定义在[1,4]上的函数f(x)是减函数,求满足下列不等式f(1-2a)-f(3-a)>0的a的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线$\left\{\begin{array}{l}x=3-t\\ y=4+t\end{array}\right.$,(t为参数)上与点P(3,4)的距离等于$\sqrt{2}$的点的坐标是(  )
A.(4,3)B.(-4,5)或(0,1)C.(2,5)D.(4,3)或(2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.△ABC中角A,B,C的对边分别为a,b,c,已知∠A=60°,a=$\sqrt{3}$,b=x.若满足条件的三角形有两个.则x的范围是($\sqrt{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC
(Ⅰ)求证:a,b,c成等比数列;
(2)若cosB=$\frac{3}{4}$,$\overrightarrow{AB}•\overrightarrow{BC}$=-$\frac{3}{2}$,求a+c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi),i∈N*,建立回归方程为$\widehat{y}$=0.85x-85.71,则下列结论不正确的是(  )
A.y与x具有正的线性相关关系
B.回归直线经过样本点的中心($\overline{x}$,$\overline{y}$)
C.身高增加1cm,其体重约增加0.85kg
D.若身高为170cm,则其体重必为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某个服装店经营某种服装,在某周内获纯利y(元),与该周每天销售这种服装件数x之间的一组数据如表:
x3456789
y66697381899091
已知$\sum_{i=1}^{7}$x${\;}_{i}^{2}$=280,$\sum_{i=1}^{7}$y${\;}_{i}^{2}$=45309,$\sum_{i=1}^{7}$xiyi=3487.
(1)求$\overline{x}$、$\overline{y}$;
(2)画出散点图;
(3)求纯利y与每天销售件数x之间的回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在数列{an}中,an=$\frac{1}{(n+1)^{2}}$(n∈Nx),记bn=(1-a1)(1-a2)…(1-an
(I)试求b1,b2,b3,b4的值;
(Ⅱ)根据(I)中的计算结果,猜想数列{bn}的通项公式并用数学归纳法进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=λ(x2-1)+x-a的图象对于任意λ∈R,与x轴恒有公共点,则实数a的取值范围为[1,1].

查看答案和解析>>

同步练习册答案