精英家教网 > 高中数学 > 题目详情
5.△ABC中角A,B,C的对边分别为a,b,c,已知∠A=60°,a=$\sqrt{3}$,b=x.若满足条件的三角形有两个.则x的范围是($\sqrt{3}$,2).

分析 由已知条件A的度数,a及b的值,根据正弦定理用x表示出sinB,由A的度数及正弦函数的图象可知满足题意△ABC有两个B的范围,然后根据B的范围,利用特殊角的三角函数值即可求出sinB的范围,进而求出x的取值范围.

解答 解:由正弦定理得:$\frac{a}{sinA}=\frac{x}{sinB}$,即$\frac{\sqrt{3}}{sin60°}=\frac{x}{sinB}$,
变形得:sinB=$\frac{x}{2}$,
由题意得:当B∈(60°,120°)时,满足条件的△ABC有两个,
所以$\frac{\sqrt{3}}{2}$<$\frac{x}{2}$<1,解得:$\sqrt{3}$<x<2,
则a的取值范围是($\sqrt{3}$,2).
故答案为:($\sqrt{3}$,2).

点评 此题考查了正弦定理及特殊角的三角函数值.要求学生掌握正弦函数的图象与性质,牢记特殊角的三角函数值以及灵活运用三角形的内角和定理这个隐含条件,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在△ABC中,动点P满足$\overrightarrow{CA}$2=$\overrightarrow{CB}$2-2$\overrightarrow{AB}$•$\overrightarrow{CP}$,则动点P轨迹一定通过三角形ABC的外心(“外心”、“内心”、“重心”或“垂心”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.己知两个等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意的n∈N*,都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-1}{4n-3}$,则$\frac{{a}_{4}}{{b}_{5}+{b}_{7}}$+$\frac{{a}_{8}}{{b}_{3}+{b}_{9}}$的值为$\frac{21}{41}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a<0,e为自然对数的底数.
(Ⅰ)求f(x)在x∈[0,2]上的最小值;
(Ⅱ)试探究能否存在区间M,使得f(x)和g(x)在区间M上具有相同的单调性?若能存在,说明区间M的特点,并指出f(x)和g(x)在区间M上的单调性;若不能存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{{\sqrt{2}sin(x+\frac{π}{4})+\sqrt{2}}}{sinx}$.
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)若f(x)=2,求x的取值集合及sin2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,1),则$\overrightarrow{b}$-3$\overrightarrow{a}$与$\overrightarrow{a}$的夹角的余弦值为$-\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x,y的一组数据如下表
x23456
y34689
则由表中的数据算得的线性回归方程可能是(  )
A.y=2x+2B.y=2x-1C.y=-$\frac{3}{2}$x+12D.y=$\frac{8}{5}$x-$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=2x+3x-8的零点有1个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.从7名男生5名女生中选出5人,分别求符合下列条件的选法种数有多少种:
(1)A、B不全当选;
(2)至少有2名女生当选;
(3)选出5名同学,让他们分别担任体育委员、文娱委员等5个班委,但体育委员由男生担任,文娱委员由女生担任.

查看答案和解析>>

同步练习册答案