精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\frac{{\sqrt{2}sin(x+\frac{π}{4})+\sqrt{2}}}{sinx}$.
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)若f(x)=2,求x的取值集合及sin2x的值.

分析 (Ⅰ)求使sinx≠0的x 范围即可;
(Ⅱ)由f(x)=2,化简得到sin2x=-1,由此得到x.

解答 解:(Ⅰ)由sinx=0,得x=kπ(k∈Z),…2分
所以,函数f(x)的定义域为{x|x∈R,x≠kπ}(k∈Z).…3分
(Ⅱ)由f(x)=2,得$\frac{{\sqrt{2}sin(x+\frac{π}{4})+\sqrt{2}}}{sinx}=2$
即$\sqrt{2}×(\frac{{\sqrt{2}}}{2}sinx+\frac{{\sqrt{2}}}{2}cosx)+\sqrt{2}=2sinx$,
$sinx-cosx=\sqrt{2}$,…(*)  …5分
所以(sinx-cosx)2=2,即sin2x-2sinxcosx+cos2x=2,
所以,sin2x=-1.…8分
由sin2x=-1,得$2x=-\frac{π}{2}+2kπ(k∈Z)$,
则$x=-\frac{π}{4}+kπ(k∈Z)$,…10分
当k=2n-1(n∈Z)时,代入(*),矛盾,舍去;
当k=2n(n∈Z)时,代入(*),成立.
所以,x的取值集合是$\{x|x=-\frac{π}{4}+2nπ\}(n∈Z)$.…13分.

点评 本题考查了三角函数解析式的化简;用到了倍角公式、基本关系式等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知f(x)是定义在R上的奇函数,对任意x∈R,都有f(x+2)=-f(x),若f(1)=2,则f(2015)=(  )
A.-2B.2C.2013D.2012

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式-x2-2x+3<0的解集为(-∞,-3)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线$\left\{\begin{array}{l}x=3-t\\ y=4+t\end{array}\right.$,(t为参数)上与点P(3,4)的距离等于$\sqrt{2}$的点的坐标是(  )
A.(4,3)B.(-4,5)或(0,1)C.(2,5)D.(4,3)或(2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题p:x2-x<0是命题q:0<x<2的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.△ABC中角A,B,C的对边分别为a,b,c,已知∠A=60°,a=$\sqrt{3}$,b=x.若满足条件的三角形有两个.则x的范围是($\sqrt{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC
(Ⅰ)求证:a,b,c成等比数列;
(2)若cosB=$\frac{3}{4}$,$\overrightarrow{AB}•\overrightarrow{BC}$=-$\frac{3}{2}$,求a+c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某个服装店经营某种服装,在某周内获纯利y(元),与该周每天销售这种服装件数x之间的一组数据如表:
x3456789
y66697381899091
已知$\sum_{i=1}^{7}$x${\;}_{i}^{2}$=280,$\sum_{i=1}^{7}$y${\;}_{i}^{2}$=45309,$\sum_{i=1}^{7}$xiyi=3487.
(1)求$\overline{x}$、$\overline{y}$;
(2)画出散点图;
(3)求纯利y与每天销售件数x之间的回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在体积一定的正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,记A1F与平面BCC1B1所成的角为θ,下列说法中正确的是①②④.
①点F的轨迹是一条线段;
②三棱锥F-AD1E的体积为定值;
③A1F与D1E不可能平行;
④A1F与CC1是异面直线;
⑤tanθ的最大值为3$\sqrt{2}$.

查看答案和解析>>

同步练习册答案