精英家教网 > 高中数学 > 题目详情
15.从7名男生5名女生中选出5人,分别求符合下列条件的选法种数有多少种:
(1)A、B不全当选;
(2)至少有2名女生当选;
(3)选出5名同学,让他们分别担任体育委员、文娱委员等5个班委,但体育委员由男生担任,文娱委员由女生担任.

分析 (1)根据题意,按A、B的选取情况进行分类:①,A、B全不选,②,A、B中选1人,先求出每种情况的选法数目,再由分类计数原理计算可得答案;
(2)根据题意,用间接法,先计算从12人中任选5人的选法数目,再分别计算①没有女学生入选,②只有1名女生入选,在总数中将其排除即可得答案;
(3)根据题意,分3步进行,①选出一个男生担任体育班委,②再选出1名女生担任文娱班委,③剩下的10人中任取3人担任其它3个班委,先求出每一步的选法数目,再用分步计数原理可得即可得答案.

解答 解:(1)根据题意,按A、B的选取情况进行分类:
①,A、B全不选的方法数为C105=252种,
②,A、B中选1人的方法数为C21C104=420,
共有选法252+420=672种;
(2)根据题意,从12人中任选5人,有C105种选法,
没有女学生入选,即全选男生的情况有C75种情况,
只有1名女生入选,即选取1女4男,有C51×C74种选法,
故所有符合条件选法数为:C105-C75-C51×C74=596种
(3)选出一个男生担任体育班委,有C71种情况,
再选出1名女生担任文娱班委,有C51种情况,
剩下的10人中任取3人担任其它3个班委,有C103种情况,
用分步计数原理可得到所有方法总数为:C71×C51×C103×A33=25200种.

点评 本题考查排列、组合的应用,涉及分类、分步计数原理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.△ABC中角A,B,C的对边分别为a,b,c,已知∠A=60°,a=$\sqrt{3}$,b=x.若满足条件的三角形有两个.则x的范围是($\sqrt{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在数列{an}中,an=$\frac{1}{(n+1)^{2}}$(n∈Nx),记bn=(1-a1)(1-a2)…(1-an
(I)试求b1,b2,b3,b4的值;
(Ⅱ)根据(I)中的计算结果,猜想数列{bn}的通项公式并用数学归纳法进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC是直角三角形,斜边BC的中点为M,试建立适当的直角坐标系,证明:|AM|=$\frac{1}{2}$|BC|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在体积一定的正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,记A1F与平面BCC1B1所成的角为θ,下列说法中正确的是①②④.
①点F的轨迹是一条线段;
②三棱锥F-AD1E的体积为定值;
③A1F与D1E不可能平行;
④A1F与CC1是异面直线;
⑤tanθ的最大值为3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.解关于x的不等式(x-2)(ax-2)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=λ(x2-1)+x-a的图象对于任意λ∈R,与x轴恒有公共点,则实数a的取值范围为[1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$x2+lnx,求曲线f(x)在x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,Sn=2an-2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Tn,b1=1,点(Tn+1,Tn)在直线$\frac{x}{n+1}-\frac{y}{n}=\frac{1}{2}$上,若存在n∈N+,使不等式$\frac{2{b}_{1}}{{a}_{1}}$+$\frac{2{b}_{2}}{{a}_{2}}$+…+$\frac{2{b}_{n}}{{a}_{n}}$≥m成立,求实数m的最大值.

查看答案和解析>>

同步练习册答案