精英家教网 > 高中数学 > 题目详情

已知向量
(1)若,求的最大值与最小值
(2)若,且是三角形的一个内角,求

(1)(2)

解析试题分析:……3分
……6分
(2)……9分
……12分
考点:本题考查了向量的坐标运算与三角函数的求值、化简
点评:熟练运用数量积的坐标运算及三角函数的性质是解决的基础,解题时还需利用三角变换知识转化求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题


已知向量=(),记
(1)若,求的值;
(2)若中,角的对边分别是,且满足,求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小正周期和值域;
(Ⅱ)若为第二象限角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)= ×,其中向量="(2cosx,1)," =(cosx, sin2x+m).
(1)求函数f(x)的最小正周期和f(x)在[0, p]上的单调递增区间;
(2)当xÎ[0,]时,ô f(x)ô <4恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)的最小正周期为
(1)求的值;
(2)求函数在区间上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)设方程在(0,)内有两个零点,求的值;
(2)若把函数的图像向左移动个单位,再向下平移2个单位,使所得函数的图象关于轴对称,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数在一个周期内的图像如图所示,A为图像的最高点,B.C为图像与轴的交点,且为正三角形.

(1)若,求函数的值域;          
(2)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,向量向量,且
的最小正周期为
(1)求的解析式;
(2)已知分别为内角所对的边,且,又
上的最小值,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在半径为、圆心角为的扇形金属材料中剪出一个长方形,并且的平分线平行,设

(1)试写出用表示长方形的面积的函数;
(2)在余下的边角料中在剪出两个圆(如图所示),试问当矩形的面积最大时,能否由这个矩形和两个圆组成一个有上下底面的圆柱?如果可能,求出此时圆柱的体积.

查看答案和解析>>

同步练习册答案