精英家教网 > 高中数学 > 题目详情
12.(2x-$\frac{1}{\sqrt{x}}$)12(x>0)的展开式中,第9项为(  )
A.C${\;}_{12}^{8}$B.C${\;}_{12}^{8}$24C.-C${\;}_{12}^{9}$D.-C${\;}_{12}^{9}$23

分析 根据二项式展开式的通项公式,求出第9项即可.

解答 解:(2x-$\frac{1}{\sqrt{x}}$)12(x>0)的展开式中,
通项公式为Tr+1=${C}_{12}^{r}$•(2x)12-r•${(-\frac{1}{\sqrt{x}})}^{r}$,
令r=8,得第9项为T9=${C}_{12}^{8}$•(2x)4•${(-\frac{1}{\sqrt{x}})}^{8}$=${C}_{12}^{8}$24
故选:B.

点评 本题考查了利用二项式展开式的通项公式求特定项的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知定义域为R的偶函数f(x)满足对任意的x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-(x-2)2+1.若函数y=f(x)-a(x-$\frac{11}{12}$)在(0,+∞)上恰有三个零点,则实数a的取值范围是(  )
A.($\frac{1}{3}$,3)B.($\frac{1}{3}$,$\frac{4}{3}$)C.(3,12)D.($\frac{4}{3}$,12)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算下列各式的值:
(1)${(-3\frac{3}{8})^{-\frac{2}{3}}}-5×{(0.2)^{\frac{1}{2}}}+{(\sqrt{5}+2)^{-1}}+{(\sqrt{2}+\sqrt{3})^0}$;
(2)$(2+{log_3}\frac{32}{9})×{log_2}3+2ln\sqrt{e}+{2^{1+{{log}_2}3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:{1}∈{1,2,3},q:{3}⊆{1,2,3},则在命题:①p∧q;②p∨q;③¬p;④¬q中,真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x∈[0,2π],则分别满足下列条件的x的集合为单元素集合的是(  )
A.sinx=0B.cosx=-1C.tanx=-5D.secx=0.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.不等式f(x)=4x-2x+2>0的解集为(2,+∞);f(x)的最小值是-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn,且Sn=2an-2,n∈N*
(1)求数列{an}的通项公式.
(2)设数列{an2}的前n项和为Tn,求$\frac{{S}_{2n}}{{T}_{n}}$.
(3)判断数列{3n-an}中是否存在三项成等差数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)数列{an}的通项公式an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$,前n项和为9,求n;
(2)数列{an}的通项为an=(n+$\frac{1}{2}$)+$\frac{1}{{2}^{n}}$,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列等式:①arcsin$\frac{π}{2}$=1;②arcsin(-$\frac{1}{2}$)=-$\frac{π}{6}$;③arcsinsin$\frac{π}{3}$=$\frac{π}{3}$;④sin(arcsin$\frac{1}{2}$)=$\frac{1}{2}$.其中正确等式的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案