精英家教网 > 高中数学 > 题目详情
12.求函数定义域.
(1)y=$\sqrt{\frac{1}{1+\frac{1}{x}}}$
(2)y=$\frac{3}{1-\sqrt{1-x}}$.

分析 根据函数成立的条件即可求函数的定义域.

解答 解:(1)要使函数有意义,则1+$\frac{1}{x}$>0,且x≠0,即$\frac{1}{x}$>-1,且x≠0,
解得x>0或x<-1,即函数的定义域为(-∞,-1)∪(0,+∞).
(2)要使函数有意义,则$\left\{\begin{array}{l}{1-x≥0}\\{1-\sqrt{1-x}≠0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≤1}\\{\sqrt{1-x}≠1}\end{array}\right.$,则$\left\{\begin{array}{l}{x≤1}\\{1-x≠1}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≤1}\\{x≠0}\end{array}\right.$,即x≤1且x≠0,
即函数的定义域为{x|x≤1且x≠0}

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.要得到y=2sin(2x-$\frac{π}{3}$)的图象,只需把y=2sin(2x+$\frac{π}{4}$)的图象(  )
A.向右平移$\frac{7}{12}$π个单位B.向左平移$\frac{7}{24}$π个单位
C.向右平移$\frac{7}{24}$π个单位D.向左平移$\frac{7}{12}$π个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设复数z=1+i(i为虚数单位),若1,$\frac{1}{z}$对应的向量分别为$\overrightarrow{OA}$和$\overrightarrow{OB}$,则向量$\overrightarrow{AB}$的模为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在锐角△ABC中,角A,B,C所对的边分别是a,b,c,设B=2A,则$\frac{b}{a}$的取值范围是(  )
A.(1,2)B.(0,2)C.($\sqrt{2}$,2)D.($\sqrt{2}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=-2x上,求3sinθ+cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c,已知b-c=2bcos(B+C)
(1)若a=2$\sqrt{6}$,b=3,求c;
(2)求证:A=2B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.集合A={y|y=x2-1,|x|≤2,x∈Z},用列举法表示为{-1,0,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设全集U=R,集合A={x|log5(x2-2)>log5(2x+1)},B={y|y=log2(x2+2x+5)},求:
(1)集合A,B;
(2)∁U(A∪B);
(3)(∁UA)∩(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{cos(\frac{π}{2}x+\frac{π}{6})\\;x≥0}\\{f(-x)\\;x<0}\end{array}\right.$,则f(-2013)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案