精英家教网 > 高中数学 > 题目详情
4.函数f(x)=x5+ax4-bx2+1,其中a是1202(3)对应的十进制数,b是8251与6105的最大公约数,试应用秦九韶算法求当x=-1时V3的值.

分析 由进位制知:a=47.应用辗转相除法可得:b=37.利用秦九韶算法可得:f(x)=x5+ax4-bx2+1=x5+47x4-37x2+1=(((x+47)x)x-37)x+1,即可得出.

解答 解:由进位制知:a=1×33+2×32+0×31+2×30=47.
应用辗转相除法可得:8251=6105+2146,6105=2146×2+1813,2146=1813+333,1813=333×5+148,333=148×2+37,148=37×4.
∴8251与6105的最大公约数为37,因此b=37.
利用秦九韶算法可得:f(x)=x5+ax4-bx2+1=x5+47x4-37x2+1=(((x+47)x)x-37)x+1,
V0=1,V1=V0x+47=46,V2=V1x+0=-46,V3=V2x-37=9.

点评 本题考查了进位制、辗转相除法、秦九韶算法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.a2+b2+c2+x2+y2=16$\sqrt{21}$,求证:(ax+by)2+(bx+cy)2≤2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=m-$\frac{2}{{2}^{x}+1}$是定义在R上的奇函数.
(Ⅰ)求m的值;
(Ⅱ)求函数f(x)在(0,1)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某学生对其30位亲属的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.
(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;
(2)根据茎叶图,指出50岁以下的亲属当中饮食指数高于70的人数,并计算这些人的饮食指数的平均数和方差(精确到整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一种放射性元素,最初的质量为1000克,按每年10%衰减.
(1)试写出t(t∈N*)年后,这种放射性元素的质量y与t的函数关系式;
(2)求这种放射性元素的半衰期(质量变为原来的$\frac{1}{2}$时所经历的时间).(lg2≈0.3,lg3≈0.47).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在边长为1的正三角形ABC中,设D,E分别为AB,AC的中点,则$\overrightarrow{BE}$•$\overrightarrow{CD}$=(  )
A.-$\frac{3}{16}$B.-$\frac{3}{8}$C.-$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=(2x2-ax-6a2)•ln(x-a)的值域是[0,+∞),则实数a=-$\frac{2}{5}$或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在ABC中,角A,B,C所对的边分别为a,b,c,且a2+b2-c2=$\frac{3}{2}$ab.
(Ⅰ)求cos$\frac{C}{2}$的值;
(Ⅱ)若c=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在棱长都相等的四面体SABC中,给出如下三个命题:
①异面直线AB与SC所成角为60°;
②BC与平面SAB所成角的余弦值为$\frac{\sqrt{3}}{3}$;
③二面角S-BC-A的余弦值为$\frac{1}{3}$,
其中所有正确命题的序号为②③.

查看答案和解析>>

同步练习册答案